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The scattering that occurs when a continental shelf wave propagating over an expo-
nential-constant depth profile is incident on a coastal promontory is here investigated
by transforming the shelf region differential equation for the mass transport stream
function to the wave equation and using high wavenumber asymptotics and the
method of successive reflexions. It is found that energy is propagated in the shelf
region according to geometrical optics, being reflected at the shoreline, promontory
and shelf-ocean boundary. A solution is sought in terms of a distribution of singu-
larities on the boundary of the promontory, and the application of all boundary
conditions is facilitated by using plane wave representations. Numerical values
obtained experimentally indicate a shelf width of some three times the wavelength
which is similar to the maximum projection of the promontory from the shoreline.
Thus it is plausible to seek an approximate solution by alternately considering the
scattering by the obstacle with the shelf width regarded as infinite and the reflexions at
the shelf~ocean boundary in the absence of the promontory. For the semicircular head-
land, an exact solution is available for the initial scattering but the successive approxi-
mation procedure converges less quickly than for the offshore barrier, in which
case no exact solutions are available. The reason is that the tendency for energy to
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384 A.M.J. DAVIS

become trapped on the shortest offshore line across the shelf is more sharply focused
in the latter case. Numerical values are given for the amplitudes of the far field modes
excited by the semicircular headland. For the offshore barrier, the density of the
singularity distribution corresponds to the velocity discontinuity at the barrier, while
at the line of the barrier the alongshore and offshore components of the shelf region
velocity field due to scattering are such that, to leading order, corresponding terms
differ only by constant phase.

1. INTRODUCTION

Recently, increasing attention has been devoted to the study of coastal trapped waves whic

in a homogeneous fluid, occur as low frequency continental shelf waves, high frequency ed

waves and intermediate frequency Kelvin waves. Reviews of this topic are given by LeBlor
& Mysak (1977) and Mysak (1980). When the rigid-lid approximation is used, the extern

Kelvin wave and the surface (gravity) edge waves are eliminated (LeBlond & Mysak 197

ch. 3). In this circumstance and with the Coriolis parameter f assumed constant in mic
latitude, Buchwald & Adams (1968) showed that the horizontally non-divergent linearize
shallow-water equations imply the existence on an exponential shelf profile of finite width «
free shelf waves which propagate with the shallow water to the right or left of the alongsho
phase velocity in the Northern or Southern Hemisphere respectively. For each value of tk
frequency w < f; a finite number of offshore modes is possible, in each of which the alongshor
group velocity, on the shelf, has the same or opposite sign as the phase velocity according ¢
the alongshore wavelength is longer or shorter than a critical distance depending on o (= @/f
and the rate of change of depth. The zero group velocity to which Buchwald (1977) refes
occurs only in the ocean region. On the shelf, each shelf wave mode consists of two plane wav
components whose group velocity vectors have cancelling offshore components, leaving i
general a net transport of energy in the alongshore direction. It is possible to have energ
trapped in the shelf region but at sets of values of the parameters differing slightly from thos
corresponding to zero group velocity in the ocean. It is shown that by transforming the differen
tial equation for the stream function in the shelf region to its canonical form, which is the wav
equation, the group velocity vector associated with each constituent term can be identified a
having direction exactly opposite to the corresponding phase velocity vector, and hence th
radiation condition for scattering can be easily applied.

The goal of the present paper is an investigation of the scattering of a long shelf wave by :
thin barrier at right angles to the shoreline and considerably shorter than the shelf width. I
is motivated by the need to understand, for the benefit of navigation and fishing, the curren
motions near the Brooks Peninsula which projects from the west coast of Vancouver Island
British Columbia. On inserting the numerical data, it is found that the barrier length a i
slightly more than one wavelength (with respect to the transformed differential equation
while the shelf width [ is 2.5 times larger.

Thus, although the scatterer cannot be regarded as small, a successful analysis can be
achieved by using high wavenumber asymptotics of the wave equation and the method o
successive reflexions. If the finite shelf width is ignored, the scattering of the incident shel
wave can be considered by standard methods. Then, on using a plane wave expansion, the
application to this scattered field of the conditions at the shelf-ocean boundary and shoreline,
but not the scatterer, yields waves repeatedly reflected in the shelf region and edge waves
refracted in the ocean. This process is continued until sufficient accuracy is achieved.
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386 A. M. J. DAVIS

is only possible if #'/h is constant, corresponding to exponential dependence of # on y. Con-
sidering a west coast in the Northern Hemisphere (f > 0), let x be measured northward and y
westward with y = 0 at the shoreline. Suppose that the depth profile is given by

h = He20-» (0<<y<l),
e (0<y <)) } (2.5)
h=H (y = 10).
Then (2.4) implies that
o 1 agk)
2 — ht N
V¢_2b(ay+o_ . (0<y <), (2.6)
vy = 0 v > 1), (2.7)
a/v
an/vl ::,_/_;: ——————
3n/vl L
o2l — — fmo — — — — — — — x —a—
- ——— = = = = = — — —
~o - - ,\
(;';\ N )) -
[(1+a)/1—a)) H(k+0)
TFicure 1. Typical curves in the &, a-plane showing how eigenvalues are determined
by equations (2.12) and (2.13).
where o = w/f > 0. The boundary conditions are
Y =0 at y =0, (2.8)
Y and 0yY/dy continuousat y =/, (2.9)
¥ bounded as  (x24y2)} - o0. (2.10)

Buchwald & Adams (1968) showed that shelf wave solutions, of (2.6) to (2.10) inclusive, exist
of the form

Y = (sin ay/sin al) eketw-D (0 < y < [),
Y = ekliz-- (4 2 1) } (2.11)
provided that « and £ satisfy the following two equations:
a2+ b2+ k2 —2bk /o = 0, (2.12)
alcotal+ (k+b)1 = 0. (2.13)

For real o in (2.12), it is necessary to have £ > 0 and o < 1. Then for each £ in the range
0 < (b/o)[1—(1—02)}] < k < (6/0)[1+ (1—-02)}],

equation (2.12) yields one value of « (the negative root can be discarded) while (2.13) gives
infinitely many values of «. When one of these values coincides with that obtained from (2.12),
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388 A. M. ]J. DAVIS

The solution (v!)y in the interval [(N—3)n, Nn] (N > 1) is given by
(vl)y = Nrn—$% arccos o. (2.18

A\

With this regarded as a first approximation to (vl)y, it then follows that

N

(D) ~ ()= (1=0)2/8(v])y. (2.19
Thus, if (vl)y < vl < (/v\l) ~N+1» there are N subcritical modes with
=b/o—vcosy,, o=vsiny, (1<m<N)

and N supercritical modes with

k=b/oc+vcosé,, a=vrsind, (1<m<N).
The distinct sets {y,,} and {4,,} of acute angles are each labelled in ascending order, i.e.

(m—1)(n/vl) < siny,, < sin b, < (ma/vl) (1 <m < N)

as indicated in figure 1. As vl — (vl)y from above, 8y = }m.

If W)y < vl < (l)yyq, @ narrow band of values, then in iddition to the 2N modes

described above, there are two subcritical modes which, as v/ — (vl)y,, from above, coalesce
to form a single subcritical mode and the (N + 1)th resonant mode.
As explained earlier, equation (2.6) can be reduced to one of standard form by writing

Yxy) = x(x, y)e?viialn (0 <y <), (2.20)

(V2+r)y =0 (0<y <), (2.21)

whence

where » is given by (2.15). Note that the factor e is more than balanced by the depth change
factor in (2.5), so that the velocity amplitudes have decay factor e~%7.

Now, since all eigenvalues of & are positive, the x-component of the phase velocity of the
solution for ¢re-it defined by (2.11) is positive, i.e. northward travelling. However, considera-
tion of group velocity shows that energy can still be propagated southward. Suppose that a
solution of (2.21) has a wavenumber vector that makes an angle £ with the positive x-axis.
Then the corresponding phase factor in ¢re-it is, from (2.20), given by

O = kx+ky—ot,
where
k, = (b/o)+vcosf, ky, = vsinp. (2.22)
On eliminating £ and using (2.15), it follows that
0 = 20fk /(B2 +k+02) = w(ky, k). (2.23)
The components of the group velocity are therefore (Lighthill 1965) given by

o Wf(B+—K) o  dbfkk, (2.9
ok~ (BrRioe’ O (BrRibe '

and substitution of (2.18), (2.19) shows that

w Ow 2wy .
(a_/c; a_kz) = NG (cos f3, sin f).
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CONTINENTAL SHELF WAVE SCATTERING 389

Hence, in the coastal region 0 < y < /, the group velocity at any point is directed exactly
opposite to the local wavenumber in x (phase velocity of ye-iet). This result provides the
radiation condition to be applied in the subsequent sections. An equivalent procedure is to
consider the time reversed when solving for y.

The direction of the group velocity vector on the shelf is determined solely from condition
(2.12), which corresponds to the semicircle shown in the wavenumber plane displayed in
figure 1. The discrete eigenvalues are determined by the application of a further relation
between a and £, depending on the parameters of the problem. If this were independent of £,
as in the usual type of waveguide, then the repeated eigenvalues would have zero alongshore
component of group velocity. However, since the prescribed condition (2.13) yields the curves
shown in figure 1, a common tangent to the semicircle and a curve must be inclined to the
k-axis, and hence the resonant mode must have a non-zero alongshore component of group
velocity. :

On considering again the shelf wave modes, given by (2.11), an interesting possibility
arises when vl = (vl)y, given by (2.18), for some N, as then §y = }n and the corresponding
shelf wave mode has k = b/o, a = v. Then comparison of (2.11) and (2.20) shows that in this
case x(«, y) is a multiple of sin vy and therefore energy cannot propagate along the shelf in
this critical mode but is trapped stationary in the coastal region. Though such a mode may be
regarded as a feature of the mathematical mode, having little relevance to physical reality,
the appearance of the sin vy solution in the shelf region plays a significant role in the subsequent
analysis, in which v/ # (vl)y for any N. If a disturbance on the shelf is regarded as the super-
position of plane waves travelling in all directions, then, except along the offshore rays, energy
is propagated away from the disturbance with reflexions at the shore and shelf-ocean boundary,
and leakage into the ocean region. In contrast, energy is ‘trapped’ on the offshore rays whose
influence on the structure of the solution is thereby enhanced.

The group velocity of a shelf wave in the ocean region has x-component dw/dk = fdo/dk,
where o = o[k, a(k)] is determined from (2.12) and (2.13). After some manipulation, it is
found that

1do 02(1 )k—b+2kl(k—b/0') (2.95)

]a=——k- p k+b+2bki(1+1/0)

which, on comparison with (2.16) and (2.17), is positive or negative according as k/b is less
or greater than £. The modes, one of which is resonant, corresponding to a repeated eigenvalue
have zero group velocity in the ocean but propagate energy slowly northwards in the coastal
region. In contrast, a mode corresponding to 8y = }=, in which energy is trapped on the shelf,
is such that energy in the ocean region propagates slowly southwards because, from (2.25),

(dw/dk) .y = — (1 — &) f/b(2bl + o). (2.26)

Between these two a mode having £ < k/b < o1 is such that energy is propagated northwards
on the shelf but southwards in the ocean, very slowly in both regions.

For any mode, the alongshore component of group velocity in the shelf region is greater
than the group velocity in the ocean region, their difference being

o22f Jb[k + b+ 20kL(1 + 1 /o)),

after use of (2.24) and (2.25). Since this quantity is small for all modes, there was some justi-
fication for its neglect by previous authors who considered only expression (2.25). However
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the above analysis gives a better understanding of the energy-trapping features of this mode
as well as providing the exact radiation condition to be applied to scattering problems.

Since the shelf wave modes are such that the wavenumber has magnitude (k2+a2)} =
(2bk/o—b2)%in 0 < y < land k in y > [, it follows from the above calculations that, in bot
regions, shorter wavelengths occur for shelf waves propagating energy southwards than fo
those with positive x-component of the group velocity, the disparity being greatest for the firs
modes of each type and decreasing as « takes values closer to ».

The problems to be discussed here concern the scattering by a fixed obstacle projecting fron
the shoreline of a (subcritical) shelf wave with lowest a-mode (3n < al < m) propagatiny
energy northward. By rescaling (2.11), the incident wave ¥; is defined by

Yy, = e*2tsinay (0 <y <), (2.27
Y = ekie— v+t sin o (y > 1), (2.28

where (withy, = y) k = b/o—v cos v, « = v sin y. The corresponding y; is, from (2.20), giver
by
X’t(x’ 'R .},) = e—lvxcosy gip (Vy sin »),) = (1/21) [e»«iv(xcosy—ysiny) — e—in@cos y+ysin y)]. (2.29:

This expression shows that ¥, given by (2.27), corresponds, at each point, to a pair of waves
with group velocities at angles to the positive x-axis and which together propagate energy
solely northwards. These waves are repeatedly reflected at the shoreline y = 0 and also a
y = lin such a way as to support an edge wave, defined by (2.28), travelling northwards in
the ocean region along the shelf boundary.

Let ¥ (and the corresponding x) measure the scattered waves due to the presence of the
barrier. Then ¥ and y satisfy (2.7) and (2.21) respectively, while, on using (2.20), the boundary
conditions corresponding to (2.8) and the continuity requirement (2.9) are

x(x, 0) =0, (2.30)
x(x, 1) = P(x, ) e-be+izio)

ox _[%¥ ~b(t+ilo)
X0 =[G () = o )b
The inhomogeneous condition is that the incident field must be cancelled on the obstacle, and
the solution is made unique by applying the radiation condition.

Physical reality ensures that resonances of the type discussed above cannot occur over any
significant length of coastline but must only appear as localized phenomena, as observed. The

formulation of a scattering problem requires some averaging of the sea depth contours near the
coastline which realistically must yield a value of v/ such that

(2.31)

)y < vl < (W)

for some N, with v/ not too close to either end value. Then there are N subcritical and N
supercritical modes which, since y,, # 8, for all pairs (m, n), have distinct offshore wave-
numbers on the shelf, and distinct exponential decay rates in the ocean. Consequently, the
apparently simple mathematical problem of total reflexion by an infinite offshore barrier
(along the y-axis) is seen to be anything but simple and currently unsolved. This is due to the
difficulties encountered when the scatterer straddles the y = [ line separating the shelf and
ocean regions. These problems are avoided in the present analysis which depends crucially on
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The reflexion and transmission of a plane wave at the shelf boundary y = [ are obtained by
considering the wave wavefunction ' and the harmonic function ¥’ defined by
X: - e-ivwcus-r[e-—ivysin-r_p(T) e~—iv(21—-y)sin'r] (y < l), (3.6)
Y’ = q(r) exp{i(b/o—vcos 7)[xti(y—D]+b} (y > 1), (3.7)

where the sign is chosen according to whether (4/0— v cos 7) has positive or negative real
part in order that ¥’ — 0 as y - co. On applying conditions (2.31), it follows that

14p(1)  +(b/o—vcosT)+b
1—p(r) ivsin 7

, q(1) = [1—p(7)]e-tvsinT,

Y

M

FiGure 2. (a) The contour C; (b) The contour S(6); (¢) The curves
cos 7, cosh 7, = cosh ¢ through (0, +¢).

Y
A PR —

(a)

At this stage it is convenient to define the real positive number ¢ such that /0 = v cosh ¢,
whence, from (2.15):

coshe¢ = (1—0%)-%, tanh¢ = o, wsinhe¢ = b. (3.8)
Then
p(1) = (ete —etir) /(ete — ¢Fir) (3.9)

according as cos 7, cosh 7, S cosh ¢. The equation cos 7, cosh 7, = cosh ¢ defines two curves,
symmetrically placed either side of the 7;-axis in the interval |7, — 2an| < }= for all integers n.
Only the interval |7,| < = is relevant here and it is illustrated in figure 2¢. The construction
(3.6), (3.7) remains valid at the point 7 = —ic on C, where it reduces to

X' = e—b(y+iw/<r), ¢,’ = 1.

Now condition (2.30) implies that the reflected wave in (3.6) will itself be reflected at the
shoreline to yield an additional term

p ( T) e—iv[z co8 7+(2l+y)sin ‘r].

Hence infinitely many reflexions occur and, from (3.5), the right-hand side of (3.2) is com-
pletely determined:

Gy(x,y; ¥) = HHP(vR) - }iHP (vR')
+-:—tf P(7)e2cos75in (py sin 7) sin (vY'sin 7)d7, (3.10)
c
where, after a summation under the integral sign,

P(r) = p(7) [e2rteinT —p(7)] (3.11)
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CONTINENTAL SHELF WAVE SCATTERING 393
and p(7) is defined by (3.9). Also

Gy(x,y; Y) = _21_n jCQ(T) exp {i(b/o—v cos 7) [x +i(y — )] + bl}sin (vY sin 7)d7, (3.12)

where

Q(r) = eivlsinr[l —p(7)] [e20tsinT — p(7)]-1. (3.13)

These results could obviously have been obtained directly, but with their physical significance
less apparent, by writing 2iP(7) sin (vy sin 7) instead of p(7)e~P@-wsin7 in (3.6), and Q(7)
instead of ¢(7) in (3.7).

The crucial feature that makes the above construction of G, and G,, possible, without meeting
eigenvalue restrictions, is that, according to (3.5), the forcing terms in (3.2) can, for y > ¥,
be expressed solely in terms of waves propagating energy away from the shoreline, without
violating the zero condition (2.30). This is achieved because the representation (3.4) is different
according as y — Y is positive or negative, with the result that if 0 < y < Y, y and Y must be
interchanged on the right-hand side of (3.5). The singular term }iH{®(vR) propagates energy
towards or away from the shore according as y is less or greater than Y, but the image term
1H{® (vR'), which corresponds to total reflexion at the shoreline, everywhere propagates energy
away from the shore. The integration with respect to 7 along C in (3.4) corresponds to the
x-component of wavenumber, v cos 7, taking all real values from —oo to o0, as in a Fourier
transform. The portion of C on the real axis (figure 24) has |cos 7| < 1, sin 7 real and positive,
and yields the superposition of plane waves. The arms of C, 7, = 0,7, < Oand 1, = &, 7, > O,
have

cos 7 = +cosh 75, 1isin 7 = sinh |7,],

and hence correspond to the superpositions of shorter guided waves (wavenumber greater
than ») travelling alongshore in either direction with exponential decay either side of the
liney = Y.

Now, from (3.9), (3.11) and (3.13), it is evident that P(7), Q(7) can become infinite on the
real axis (7 = 7,), where, for all 7, [p(7;)| = 1 and

arg p(7,) = —2 arctan [sin 7,/(e—cos 7,)],

which takes values between + 2 arcsin (e~°). The integrands of (3.10), (3.12) remain regular
at 0, = but poles occur when

vlsin 7, +arctan [sin 7,/(e°~cos 7)] = mn (m = 1,2,...),
which, with ¢ given by (3.8), implies that
vsin 1, cot (vlsin 7,)+b+b/o—vcos 7, = 0.

Comparison with (2.12), (2.13) shows that these poles correspond to the possible shelf wave
modes at the given o and b/. The values of 7, in (0, }=n) are {y,,; 1 < m < N}, which yield the
subcritical modes, while those in (4=, n) are {r—4,;1 < m < N}, which yield the super-
critical modes.

34-2


http://rsta.royalsocietypublishing.org/

JA

/ y

L A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

394 A.M.]J. DAVIS
Since, for complex values 7, +i7, of 7, the function e2*sin7 has modulus
exp (—2vl cos 1, sinh 7,),

the complex zeros of e2¥sin7 —p(7) must have cos 7, small, in which case the upper signs in
(3.9) are appropriate. There are evidently infinitely many discrete zeros {7, 7,;7n > 1}
asymptotic to the line 7, = 4n such that Re (3n—7f), Im 7} > 0and Re (}n—7;), Im 7; < 0.
These poles of P(7) yield residues with the factor e-#zeos7i or e~zcos7;  which have rapid
exponential decay in the positive or negative x-directions respectively. Thus the value of x
must be taken into account when considering deformations of the contour C'in (3.10) and (3.12).

The radiation condition requires that this contour € be indented below the poles {y,,} and
above the poles {r — 48,}. Then deformation to $(}r), denoted by S, shows that (3.10) can be
rewritten

Gy(% y; Y) =HH{(vR) — JiHP(vR')

+% f P, (1) e-weos sin (py sin 7) sin (»Y sin 7)d7
S

+2 f “U[P(1) = P.(1)]e-bacos7 sin (vy sin 7) sin (v sin 7)d7,  (3.14)

TJ —iw

where the analytic functions P,, P_ are obtained by taking the upper or lower signs respec-
tively in (3.9). Now, in an obvious notation,

_ e=2sinrlp (1) —p,(7)]
F =B = o T e () pr (e
where, from (3.9), the denominator reduces to 1 at 7 = —i¢, and

p_(1)—p. (1) = 2isin 7(cosh ¢ —cos 7)/[1 —cosh (¢+1i7)].

Hence, by application of Watson’s lemma,

[t - P eveorar

—ic0

N f—ic 2i sin 7(cosh ¢ —cos 7)
—iw  1—cosh (¢+i7)
i e—-iv(z cosh c—2ilsinh ¢)
™~ V2(ix sinh ¢ + 2/ cosh c)?
i e—-b(@l+izo)
~ B(x+2o)”

e—iv(:ccos T+2lsin7) d 7

after substitution of (3.8). Thus the last integral in (3.14) is given asymptotically by

lf_'w [P_(1) — P, (7)] e~»®cos7 sin (vy sin 7) sin (vY sin 7)d7

TtJ —iw

o2e—ibxlo e—b@l-y-T) e—b@l-y+T) e—belty-T)
4nb? {(io-x+2l——y— Y): (iox+20—y+7Y)2 (iox+2l+y-7Y)?
e-—b(2l+v+Y)
+(io‘x+2l+y+ Y

)2}, (3.15)
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This result corresponds to those obtained by Buchwald (1977) and Chao ¢t al. (1979), who too
obstacles small enough for a Fourier transform in x to be applied to the scattering problen
After solving ordinary differential equations in y, the inverse transform was estimated at larg
distance by deforming the path of integration to a large semi-circle at infinity and neglectin
the branch cut integrals. The remark by Chao et al. that scattering favours higher mode
corresponds to the denominators E(y,,), E(n—46,), where E(7) is defined by (3.19), takin
smaller values as v,,, 8,, increase. Note that E(7) vanishes when k(7) satisfies (2.16), i.e. a
resonance.

_The validity of expansions (3.204, b) depends on the earlier assumption that (vl)y < vl <
(vl) y4q for some N, which eliminates the following difficulties.

If vl = (vl)y41, then comparison of (3.19) with (2.16) shows that P(7) has a double pole
corresponding to a repeated eigenvalue whose modes, according to (2.25), have zero grou
velocity in the ocean region. Then expression (3.204) would be augmented by the residue a
this double pole, which is a linear combination of two modes, one of which is resonant.

If vl = (vl)y, then 8y = }n, and a pole of P(7) lies on the path of integration S. Then .
Cauchy principal value of the integral would be required, to satisfy the radiation condition
with the result that the Nth termin the firstsumof (3.204), namely — 2i[E(3n)]sin (vy)sin (vY)
would be halved and a corresponding term added to (3.204).

If (vl)y < vl < (vl)y, then the Nth term of (3.206) would be subcritical and therefor
appear instead in (3.204), with both this and the existing Nth subcritical mode having ver
small denominators.

However, in the near field, expansions (3.20a, b) are inappropriate and it is necessary t
retain the source and image source terms apart from the integral in (3.16). Using the relatio

P(1) = p(r)e-tsint[1 + P(1)],

derived from (3.11), it follows by repeated application that

:—Ef P (1) e-zcos7gin (vy sin 7) sin (vY sin 7)d7
N

i oM
;1; by f [, (7)]7 e n@nlsinT+zeosn) gin (py sin 7) sin (vY sin 7)d7
n=14J8

+1itf [p,(7)]Me-v@MIsinTtzcosnD P (7) sin (vy sin 7) sin (vY sin 7)d7.  (3.21
s

Since p,(7) is a slowly varying function, the series consists of integrals of the type (3.4), witl
the saddle points moving towards §n as n increases. The nth integral yields contributions tc
G, corresponding to rays reflected » times at y = /, and n or n+ 1 times at y = 0, accordin
to the exponential components of the sine functions. The evaluation of p_(7) at a saddle poin
corresponds to taking the appropriate reflexion coefficient for each such ray. The expansio
described by (8.21) can be continued indefinitely because the assumption that 7 = {=n is no
a pole of P, (1) implies that the residual integral tends to zero as M — co. This assumptior
also ensures that, after a finite number of steps, all subsequent saddle points are nearer tc
7 = %n than the poles of P, (7). This ability to move the saddle points relative to the poles i
due to the latter occurring when the rapidly oscillating function e?*sin” equals the slowl
varying p. (7). It should be contrasted with the canonical form of a plane wave representatior
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The above analysis depends crucially on there being no pole at 7 = 1=, i.e. no shelf wave mode
in which energy is trapped on the shelf. The exclusion of the double pole is less important here
because the source lies on the shelf, forcing the radiation condition to be applied in this region.
Turning attention now to Gy, a slightly different approach is required when deforming the
contour in (3.12) because the change to an analytic integrand involves the expression

Q+(7-) e—(blo—vcos Ty~ _ Q__(T) elblo—vcos TXy—I)

which, for large enough y, becomes exponentially large as 7 — —ico. This difficulty is over-
come by arranging to integrate along a curve on which /0 — v cos 7 is pure imaginary. For
x # 0, let the contour C in (3.12) be deformed, according as x is positive or negative, to §(0)
or §(m), respectively, along which the integral vanishes because (3.9), (3.13) imply that
Q(—1) = Q(7) = Q(7+2n) for all 7. The non-analyticity of the integrand leads to the branch
cut integral

—i
21": ¢ [Q+ ( 7-) e—(b/cr—vcos TXY D) __ Q_(T) e(b/u’—vcos T)(y—l)] ci(b/o-—vcos T)+bl sin ( VY Sil’l 7-) dT
—jo—dnsgnzx

which is taken along one half of the lower curve in figure 2¢, but unlike the last integral in
(3.14), a large enough value of 4(/—y) does not ensure that this integral is negligibly small
throughout the ocean region. It is so in the far field, yielding expansions in terms of shelf wave
modes which, as expected, correspond exactly to those in (3.204, b). Thus as x — o0,

: Y exp {i(b/o —v cos v,,) [x +i(y — )] +60}
G (x: Ys Y) ~ 2i Zl E(‘}/m)x

sin (v/sin y,,) sin (vY sin y,,)
(3.250)
while, as x - —o0,

o X exp {i(b/ + v cos 8,) [x+i(y— )] + b1}
G,/,(x, y; Y) 21m2=1 E(n—9d,)

sin (v/sin 8,,) sin (vY sin 8,,).
(3.250)

Consideration of G, in the near field is complicated and, since the details are not required in
the subsequent analysis, they are not included here.

4. NUMERICAL VALUES

The physical phenomenon that motivates the present problem is the Brooks Peninsula on the
west coast of Vancouver Island. Depth measurements in the vicinity of this peninsula of length
a = 20 km show that the profile (2.5) is a good approximation when H = 2 km, [ = 50 km
and i(a) = 100 m. Then b/ = 2.496, £(0) = 13.57 m. Now the dominant shelf wave mode is
observed (Cutchin & Smith 1973) to have alongshore wavelength of approximately 1000 km,
ie. kl ~ 75m ~ 0.314,k/b = 0.126. Then the lowest mode solution of (2.13) yields o/ =~ 0.973,
and subsequent substitution into (2.12) gives w/f = o ~ 0.128. Since, at latitude 50°, the
Coriolis parameter f ~ 9.62 rad/day, this value of o corresponds to a period of 5 days, in
agreement with observations. Further numerical values obtained are

o1 ~ 7.800, v/b~= 7.736, v~ 1931, va = 7.724,

so the use of short wave asymptotics is appropriate. Resonant modes do not occur because
(vl)g < vl < (vl)-,where, from the formulae (2.18) and (2.19), (vl)¢ = 18.128 and (Vl)7 ~ 21.265.
Thus, for the above numerical values of 4/ and o, there are six subcritical and six supercritical
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shelf wave modes defined by angles {y,,, 6,,; 1 < m < 6} which, with the corresponding wave-
number components, are listed in table 1.

TABLE 1

m Vi al kl d,, al kl

1 7° 14/ 2.429 0.314 9° 8’ 3.067 38.53
2 15° 53/ 5.283 0.898 18° 317 6.132 37.78
3 25° 387 8.353 2.061 28° 267 9.193 36.45
4 36° 357 11.51 3.964 39° 22/ 12.25 34.40
5 49° 37/ 14.71 6.960 52° 207 15.28 31.27
6 68° 33’ 17.97 12.41 71° 107 18.27 25.70

As mentioned in §2, the shelf waves propagating energy southwards have shorter wavelengths
than those with positive component of group velocity, the disparity being greatest for the first
modes of each type. The lowest offshore supercritical mode has x-component of wavenumber
equal to v cos &, +bo—1, which differs little from v cos y + bo—1. Its value is 15.4385, which
corresponds to an alongshore wavelength of approximately 8 km, about 1/120 that for the
lowest offshore subcritical mode.

With the above values of o, 4/ and f, the group velocity in (2.26) is about 1.7 km/day, and
a similar speed is found for the northward rate of energy propagation on the shelf when the
group velocity in the ocean is zero. Thus although energy is not trapped simultaneously in
the two regions, according to the present mathematical model, the disparity would be diffi-
cult to detect in practice.

If the source introduced in §3 is placed on the barrier, i.e. 0 < Y < a, then insertion of the
above values of o, b/, a/l in (3.15) shows that the largest term, the first, has magnitude bounded

by
o2e~t-a /4nh2(l—q)2 = 1.300 x 104,

5. METHOD OF SOLUTION

For the offshore barrier, equations (2.7), (2.21) and conditions (2.10), (2.30), (2.31) are
satisfied by the representations

x5y _ (@ Gy(x, 95 Y)

sl =[G yin)er (&)
in which equation (3.2) ensures that

#(y) = [Ox/0x15=5E (0 <y < a). (5.2)

Thus the scattered field may be regarded as being due to a distribution of sources on the
barrier with density function p(y) related to the normal derivative discontinuity in ¥, i.e.
discontinuity in the offshore velocity component.

Since condition (2.32) takes the form

x(0,y) = —sin (vysiny) (0 <y < a), (5.3)

the representation (5.1) must be such that
faﬂ(Y) G,(0,y; Y)dY = —sin (vysiny) (0 <y < a), (5.4)
0

35 Vol. 303. A
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which determines x(y). Thus the problem is equivalent to that of solving an integral equation
of the first kind with symmetric kernel, whose values are difficult to compute accurately.
This is overcome in the solution presented below by constructing an iterative process that
exploits known methods and solutions in the limit 4/ - co0 and the large value (ca. 23.2) of
2y(l —a) which shows that energy scattered offshore and reflected back to the barrier must
travel some four wavelengths. The procedure is more clearly explained by considering not just
the offshore barrier but the more general case of an obstacle bounded by the curve I" defined
in §2. The representation of x as the field due to a source distribution on I" of density x(s) is
evidently of the form

XX, 7) = [ 406 (X=x Vi) (5.5)
The corresponding disturbance in the ocean region is given by
VX Y) = [ 40 CX -5 ¥ig)ds

On letting (X, Y) — I, the application of condition (2.32) yields
[ 163 6K =5, Y ) loxmrerds = = u(X, T3 )l (5.6)

Now, in the 4! — oo limit, the scattering problem may be regarded as that due to the inci-
dence of the two plane wave components of yx;, given by (2.29), on the closed body D formed
by the curve I' and its image I" in the x-axis, with no other boundaries present. Since this
problem has received much attention in the literature, the required source density p,(s; v)
in this limit will be regarded as a known function. Thus, in (5.6)

frﬂo(SS V)G (X =% Y5 9)lx, mrerds = = [X:(X, Y5 7)]r (8.7)
where G = limy_,,, G, and from (3.10) is given by
GUX -2, Y;y) = HHE (vp) — HH (vp'), (5.8)
where
” p=[x=X2+@u-Y)?1} p =[(x-X)2+(y+7¥)% (5.9)
On writing
u(s37) = (s V) +p*(s57) (5.10)

G(X—x,Y;y) = Gy X—x, Y;9)+GH(X—-x, Y;y),
it follows, on using (5.7), that the integral equation (5.6) can be written in the form
[ 55 M I6UX =5 Y5 )ex prerds = = [ w53 D GHX =, Vi) lexmpers. (5.11)
Now (3.10) and (2.29) imply that
GHX—x, ;) = '11% f P (X, T3 7)ot sin (vy sin 1) d, (5.12)

so the unknown right-hand side of (5.11) can be regarded as the superposition of terms like
the right-hand side of (5.7), with the angle ranging over all values on the contour C. The
scattering problem in the 5/ — co limit is well posed for a pair of plane waves incident at any
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angle 7 in the real interval (0, n), and the required source density #,(s; 7) on I" can be extended
to complex 7 by analytic continuation. Since the function P(7) in (5.12) corresponds to multiple
reflexions at y = 0 and y = /, this plane wave representation of G} shows that, at any point
(X, Y), all reflexions must occur in pairs of the type x,(X, Y; 7). By exploiting this analogy and
the extension of (5.7) to all angles of incidence, it follows on substitution in (5.11) that the
source density x(s; y) must satisfy

w(ssy) = puls;y) —mols;y)

:[f [&(S'; )‘)f I (7)[eiy 87 sin (1.'/ sin 7)](9:,11)61",“0(5; 7)d7d8'. (5.13)
r (o]
On writing

K(s, ) = [ P(r)[ebmemersin (vy sin )] gpersiols 1), (5.14)

where [ ] = [x;(x, y; n—7)] is expressed as a function of s’, the integral equation of the
second kind for u(s;y) on I' is seen to have a kernel K(s, s’) independent of y and whose
dependence on the shape of I' is expressed solely by the function u,(s; 7), i.e. knowledge of
scattering by D of all possible incident plane wave pairs. The dependence of u(s;y) on ¥y
arises only from the forcing function g4(s; ). Equation (5.13) can also be written as an integral
equation for u*(s; v), namely

s m)=mis ) = [ KGO, (5.15)
where

wa(s3y) = f rMo(s'; y) K(s, s")ds’, (5.16)

and K is defined by (5.14). Thus, by subtracting out the solution in the limit 4/ - co, the
integral equation of the first kind (5.6) is replaced by one of the second kind (5.15). This
formulation is advantageous if X is a small kernel, which seems likely because the rapid varia-
tion of P(7) cannot be cancelled by the other terms in the integrand of (5.14). With the scatter-
ing obstacle of limited extent, the dominant contributions to this integral are from values of 7
near 3w and are estimated by deforming the contour to steepest descent paths as done for the
near field of G, in §3.

The functions x,(s; v), us(s; v) etc., obtained by solving iteratively the integral equation
(5.15), are those found from the following iterative procedure for solving (5.11):

fr/"n(s; V) [GHX =2 Y;9)]ix, prerds = — frﬂn_l(s; NG X =%, Y;9)]ix, merds (n > 1).

Thus the nth iteration considers the scattering by the obstacle in isolation of the superposition
of pairs of plane waves due to reflexions at y = 0, / of the field scattered at the (z— 1)th itera-
tion. Physically, the obstacle is sufficiently far in terms of wavelengths from the edge of the
shelf for a convergent method of solution to be obtained by alternately considering one and
ignoring the other, with the shoreline condition (2.30) maintained throughout.

Mathematically, the solution proceeds by solving the basic scattering problem, represented
by (5.7), and subsequently evaluating the kernel K(s, s*), given by (5.14), which is expected
to be small enough for just a few terms of the iterative sequence {u,(s; ¥); n > 1} of source
density functions to provide a sufficiently accurate approximation to u*(s; y) = 3%_; #.(s; 7)
and the corresponding field (5.5).

35-2
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Exact solutions of (5.7), for suitably chosen I, are in terms of series involving special functions
but these are slowly convergent. Their estimation is achieved by using a Watson transformation
or similar reformulation, as illustrated in the next section which considers the simplest of such
cases, the semicircular obstacle.

If the obstacle is slender, then an approximate solution of the basic scattering problem can
be obtained either by transforming condition (2.32) to an approximate one on the shoreline
or by using slender body theory in which the scattered field is represented as that due to singu-
larities placed on the x-axis within the obstacle.

If the curve I' is smooth and the closed body D is convex, then the methods of geometrical
optics (first-order W.K.B. approximation) furnish a good approximation to the basic scattering
problem. On substituting (5.8), equation (5.7) can be written

~ D6, V) = 4 [ (o3 v) [H200) — HP s = 4 [ mlos 1) HP (o) s,

(5.17)
since the definition (2.29) of y, implies that
[o(s; V)Ir = — [po(s; =) 1r = = [#0(s; V)1
On writing
Ho(s3y) = Ho(ss ¥) —Ho(s; —7), (5.18)
where

[Ao(s; £7)1r = [o(s; F)1r
equation (5.17) splits into the pair

RUX T £y) = —g et — g [ A 2y HP(p)ds, (519

i.e. the components fiy(s; +7y) of the source density correspond to the components £;(X, Y; +7)
of x;. Now HH{?(vp) is the free space Green function, and the Kirchhoff approximation states
that, except in the penumbra region,

Bo(s v) ~ 20%i(x, y57)/n (5.200)
on the portion of (I'+I") ‘lit’ by the incident plane wave g;(x, y; v), while
fals3 ) ~ 0 (5.200)

on the ‘dark’ portion of (I'+I"). On I, there is a portion ‘lit’ directly by £,(x,y; ) and a
smaller, possibly zero, portion lit by ®,(x, y; —7), which corresponds to reflexions from the
shoreline. The assumption of a convex scatterer removes the difficulties of multiple reflexions.

If the scattering body has a sharp corner, then from it radiate, in general, edge-defracted
waves which are not predicted by geometrical optics. This is immaterial for the corners at
each end of the double obstacle D when I" does not meet the x-axis at right angles. However,
it is a significant difficulty for the end of the offshore barrier whose consideration is the principal
aim of this work. For this case, the construction of an approximate solution of the basic scatter-
ing problem requires the use of the complex Fresnel integral which takes account of edge
diffracted waves and the lit and ‘shadow’ regions. A compensation here is that, after having
found a sufficiently good approximation to p,(s; 7), the subsequent evaluation of K(s, s') is
simplified by having ¥ = 0 everywhere on I', the barrier.
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6. THE SEMICIRCULAR OBSTACLE
(a) Determination of pg in a suitable form

On introducing polar coordinates by writing x = Acos ¢, ¥y = Asing, X = A cos ¢/,
Y = Asin ¢, a suitable choice of origin ensures that the boundary I' for a semicircular obstacle
of radius a is given by A = 4, 0 < ¢ < 7. Then the expansions

eba = eeosd = J(WA)+2 3 J,(vA) (—i)" cos ng
1

HP (vp) = HP {p[A2+ 42— 214 cos (¢~ )1}
= Jy(vA) HP(vA) +2 %;lJn(w\)H,(f)(vA) cosn(p—¢') (A= A)

enable the incident field y; and limit Green function G}, given by (2.29) and (5.8) respectively,
to be written in the forms

J,(vA) (—1)™ sin ny sin ne, | (6.1)

M8

xi(%y;y) =2 )

J,(vA) HP(vA) sin ng’ sinng (A > A).

3
] 8 3
(AN :

Gy X—xY;y) =i

Then substitution in (5.7) yields

Holad, v) = —542;:]1 ﬁ(,(,;—)(l_)v% sin ny sin n¢g (6.2)

but non-uniquely if J,(va) = 0 for some n. An alternative procedure, which yields (6.2)
uniquely, is to require the source distribution to be such as to annihilate the incident field
within the scattering obstacle. The scattered field in this 4/ - oo limit is given, from (5.5), by

20X, ¥39) = [ wolad; v) Gy(X~acos ¢, ¥; asin ) adg

® . J,(va) . .
= —_\n+1 0N/ (2) ’
2n§=}l (—1) AO(va) HP (vA) sin ny sin n¢ (6.3)

which is a sum of fields due to singularities of all orders placed at the origin.

Since H{®(va) cannot vanish, the expression (6.2) is defined for all va. Indeed, here is an
elementary example of how the null field method (Bates & Wall 1977) can eliminate the
difficulties associated with irregular values of v, described by Jones (1974) and Ursell (1973,
1978). The numerical values in §4, e.g. va ~ 8, suggest that the series in (6.2) and (6.3) are
slowly convergent and must be estimated by other means. One possibility is a Watson trans-
formation in which each series is regarded as a sum of residues, and a corresponding contour
integral is formed (Jones 1964, §8.7). The series in (6.3) is evaluated in this reference but the
result does not obviously yield (6.104, ), which therefore must be obtained from (6.2).
Preferred here, and with some details included for explanatory purposes, is an alternative
transformation, based on Poisson’s sum formula:

o)

S gn) = g(A) eximida,

n=-—w m=—wo —w
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used by Nussenzveig (1965), who considered in great detail the high frequency scattering by
a sphere.

With his methods, consider
cos nf

= n
«(&, 0) 2 €pl T )’ (6.4)
where ¢, = 1, ¢, = 2 (n > 1) is Neumann’s symbol. The relevance of this to (6.2) is that

fo(ag;y) = (1/ma)R(va, ¢ +7) (6.5)

where f, is defined by (5.18). The complex conjugate series is considered for closer analogy
with Nussenzveig’s analysis. The result of applying Poisson’s sum formula to (6.4) is

0 ©  jneind © ©  eid@+im) arimd )
B0 = E mrE T2 g
and subsequent rearrangement with the use of the identity
HO(E) = e HP(E)
yields
® cos Af )
k(€ 0) = 2 e@m+hitA g, 6.6
&0 =22 mg* (@0

Examination of the integrand as |A| — co in the upper half of the complex A-plane shows that,
for allm > 0and |0| < m, the path of integration can be closed by a large semicircle at infinity.
The poles of the integrand occur at the zeros of H{(£) in the upper half-plane which lie on a
curve h,(£) in the first quadrant. This procedure yields a residue series consisting of exponentially
decaying terms, provided |0| < in. Thus (%, 0) is exponentially small on the dark half of
the circle, and the physical significance of this diffracted field is described by Keller’s geo-
metrical theory of diffraction (Levy & Keller 1959). For }n < 6 < =, it is necessary to use the

identity
cos A0 = ei™ cos A(n—0) —ie!l™=9 sin An

to rewrite (6.6) in the form

© ® cos /1(1: 3) o +-ie ei/\(}n-&)

KE0) =2 3 | “pmg eenbda- f_wmmda, (6.7)

where € > 0 and the m-summation in the second integral is valid wherever Im A > 0. The
series of integrals in (6.7) yields exponentially small residues as above while the additional
integral is estimated by deforming the path of integration to pass through the saddle point
A = £ cos (0 —%n) without crossing the curve £,(£). This saddle point is located by using the
Debye asymptotic expansion for H{"(£), namely

HP(E) ~ (2/m)} (82— 22)~4 exp {i[(§2~A%)} — A arccos (A/£) —4nl}, (6.8)

which is valid in a neighbourhood of the segment —& < A < £ of the real A-axis, with
(£2—-2%)-1 > 0, 0 < arccos (/\/g) < m on this segment. It then follows that, on the lit half
of the circle (3n < |0] < =), (6.7) yields

K(gy 0) ~ — 1w cos 0 'icos0,
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The representation (6.6) ensures that «(&, #) has a smooth transition through the penumbra
region close to |#| = in. When these results for «(&, 0) are substituted in (6.5), it follows that
on I

Polagsy) ~ 0 (0 < ¢ < in—y), } (6.9)

fo(ag;y) ~ —vcos (g+7y)ePecs@MN(in—y < ¢ < m),

which, with £, defined by (5.19), verifies (5.204, b) for the semicircular obstacle. It is helpful
to note that the two intervals of ¢ in (6.9) are characterized by opposite signs of cos (¢ + 7).
With the aid of (5.18), the estimation of the series (6.2) is now complete. With the angle of
incidence allowed to vary through acute angles, it follows that, if 0 < 7 < i,

ol 1) ~ —v cos (¢ + 1) e et (fr—1 < ¢ < 7
+vcos (p—71)eacosd-nN(Ip 17 < ¢ < 7), (6.10a)

where the intervals indicate whether the corresponding term is to be included in the asym-
ptotic form of uy(a¢; 7). As 7 increases towards §n, the first of these lit segments expands to the
whole of I" while the second shrinks to zero. The corresponding result for in < 7 < = is

/‘0(“¢; T) ~ — ) COS (¢ + 1') e—ivacos(p+r) (

+ v cos (¢ — 1) ePracos@-n  ( ¢ < T—3m). (6.100)

The scattered field £ in (6.3) can also be asymptotically estimated by the above methods
but for ¥ > g, it is simpler to substitute (3.5) into the left-hand side of (6.3), yielding

X, Y;y) = —Ea;cf fn,uo(agb; v) e~ (X —acosdlcos7+¥ sinl 5in (pg sin ¢ sin 7) d7dg,
cJo

and then to use (5.18) and (6.9). The principal contribution to the resulting double integral
arises from the two-dimensional saddle points at which the phase is stationary with respect to
7 and ¢. In complete agreement with geometrical optics, the values of ¢ and 7 at the saddle
point(s) define the points of contact with I" of incident rays from one or both component plane
waves of x;, and the angle(s) of reflexion towards (X, Y).

(b) Determination of p by using iterations of (5.15)

When the finite shelf width is taken into account, the scattered field £ induces an additional
field

[ molas; )63 (X-acos g, ¥; asin ¢)ad,
0
which on substitution of (5.12) takes the form
%f fn,uo(aqi; v) P(7) x:(X, Y; 7) elracosgeos gin (pg sin ¢ sin 7) drd¢
cJo .

Then, with P(7) expanded as in (3.21) and (2.29) substituted for y,, this additional field
consists of terms of the form

_%tf J‘"ﬂo(aqs; ) [p(7) ] e X ~acosheos T+ T Vsinrlsin (pa sin ¢ sin 7)d7dg  (n > 1),
cJo
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so the successive reflexions at ¥ = 0, / may be considered as fields scattered by circles of radius
a, with centres at (0, + 2al), and modified by the reflexion coefficient (7). Identification of
lit and dark segments shows that the first correction x,(a@; ) to the source density is deter-
mined by reflexions travelling towards the shoreline, i.e. the circles in ¥ > 0. The spreading
effect of the geometrical optics scattering by a circle means that u,(ag; y) is smaller than
wo(ag; v) by a factor of order [a/2(/ —a)]t. To verify this, consider the expression obtained by
substituting (5.14) in (5.16), which for the semicircle is

m(ags ) = = [ P(r)mfag; 7 |7 mtag's vy evcoseosrsin (vasin g sin r) dgdr. - (6.11)
C 0

The ¢'-integral can be evaluated, to leading order, by substituting (6.104) and seeking points
of stationary phase in the various intervals of ¢’. The result suggests a more direct method is
available. First, substitution of the Fourier series (6.1) and (6.2) yields

af Wolag’; y) evacosd’eost sin (pg sin ¢’ sin 7)d¢’
0

- f " polag’s v) Rula cos ¢, asin ¢'; 7)dgy
0

T J,(va)
=4 nz;'l H?(va)

= i[k*(va, T—7y) —K*(va, T+7)], (6.12)

k*(§,0) = i:‘, e"h{“(’a) cos nfl = 2 15‘152) eind,

n=—0o

sin ny sin a7t

where

Again with the methods of Nussenzveig’s analysis, Poisson’s sum formula gives

*Eo = 3 | SE) inorammq

metw J —0 HP(E)
— e e M_ iA(0-+2mm) ] \ 3 —A(g) IA[~0-+H@2m+1)m] J ) |
=2 ) . EPEC + 3 | mhae

The identity
Jy(£) ™ —J_,(£) = isin tAHP(£)

assists in obtaining the simpler form

o +ie Hf)(g)

k*(£,0) =2 mi;o f io 1}]?\1()2) e@miDirdcog A(w—6)dA + % f_w . Im_f e g,

By the arguments applied to «(£, 8), the above series of integrals can, for 0 < 0 < =, be
expressed as a sum of exponentially decaying residues. The remaining integral is estimated by
deforming the path of integration to pass through the saddle point A = £ cos 36 located by
using (6.8) which implies that, in the stated region,

HP(E)/HD(E) ~ i exp {—2i[(£2~ A%}~ A arccos (/£)]}.
Hence the function «*, which is even in 6, is given by

K*(£, 0) ~ H[nEsin 30[]} exp [~ 2i€]sin 30| +1ni]
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CONTINENTAL SHELF WAVE SCATTERING 407
except when sin 16 is small. Finally, substitution in (6.12) yields, for real 7,

n . . . . .2 Jy(va) . .
afo Moag’; v)eracosg’eost sin (pg sin ¢’ sin 7)dgp’ = 4i n§1 H—zzg)—(-l%;sm ny sin nr

~ var ie}ni sin 1 T—vy z}czivasin Y7yl _[sin T+7y %czivasin§<f+y) . 6.13
2

Since formulae (6.10a, ) and (6.13) are valid for real 7 only, their substitution into (6.11)
is necessarily restricted. However, without detailed consideration, the analytic continuation
of these results into the complex 7-plane must be such as to allow p,(ag; y), given by (6.11),
to be estimated by the methods used in §3 to obtain the near field behaviour of G}. Then
(6.104a, b) and (6.13) can be used to locate the saddle points, which are all in the interval
(0, ) of the real 7-axis, and to evaluate the corresponding contributions to u,(a¢; v). For
each ¢ in (0, ), a saddle point contribution of leading order can only occur at a value of 7
within the interval specified by (6.104, b). In this way it is verified, in agreement with geo-
metrical optics, that fi(ag; —7) does not contribute significantly, for any ¢, while jy(a¢; 7)
does so except when ¢ is close to 0 or 7.

Thus, on deforming the contour C to § in (6.11), with asymptotically small error, and
expanding P, (7) as in (3.21), the terms obtained have phases

—v[2nlsin T+acos (p+7)—2asin (rFy)] (n > 1)
(provided $n—¢ < 7 < $n—¢) which are stationary when
2nl cos T—asin (¢+7)—acos }(7Fy) =

With a/2! regarded as a small parameter, this transcendental equation has approximate
solution

7 ~ §n—(a/2nl) [cos ¢ +cos (3nF §y) {1 + (a/2nl) [sin ¢+ } sin (3n F 7)1}

For each n > 1 and choice of sign, corresponding to the two terms of (6.13), such a saddle
point occurs provided

¢ > (a/2nl)[cos ¢ +cos (3nF §y)] > dp—m, (6.14)
where the interpretation of the inequalities must allow for the penumbra regions. Then,
continuing to retain only the first term in 7—}n, the dominant terms in the double integral
(6.11) for p, are, with respect to powers of (v/)~! and (a/2[), given by

ialags ) ~ Jsin gebesnd 3 [p,(3m)]re-

n=1

[[[nl/a 155111‘111(12411:;;12/)(111: ) ]écxp<i"a{2sin (4 + by) — 4 [cos ¢ +cos (in+%y)]2}>

- [nl/a - %:11:11;&1‘ ;si%rz’)(i:n - %y)] exp <iva {2 sin (3n —-}y) — [cos ¢ +cos (3n—3vy)] >>:[| |
(6.15

subject to the restriction (6.14). Thus the source distribution u,(ag;y) is, in contrast to
Mo(ag; y), almost symmetric about ¢ = }n and asymptotically non-zero over nearly all of I
The saddle points are all close to 7 = }n because only rays travelling almost offshore can be
reflected back to the scattering obstacle. The vanishing of the first term of (6.13) near 7 = v,

36 Vol. 303. A
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which can be regarded as a ‘shadow spot’ with respect to the plane wave ¥;(, y; —7) defined
by (5.19), is immaterial to expression (6.15).
The next iterate p,(ag; y) of the source density is given, from (5.14) and (5.15), by

po(ag; y) = 1:{ f P(7) po(ag; 1) f"ﬂl(a¢’; y) elracosg’eost sin (g sin ¢’ sin 7) d¢’ dr,
C 0

which, by substitution of (6.11), can be rearranged into another form resembling (6.11),
namely

Ko(ad;y) = %f P(7) py(agp; 7) f ".“o(a¢/3 y) evacoseos 7 sin (pg sin ¢’ sin 7)d¢’dr  (6.16)
C 0

Since the saddle points are again close to 7 = }n, the ‘shadow spot’ effect means that the
form of (6.15) appropriate for use in (6.16) is

@ 3
pi(ad; T) ~ }vsin pevalsingtzsindridnl 3 [p (1n)]» (3) exp [ — 2ival — (iva?/4nl) cos? ¢]
n=1

I}
§ (¢ > (a/2l) cos ¢ > ¢—m)
— Vezivasin(}ﬂ+£f)2(¢), (6.17)

where

ﬁ) ¥ e—2ivnl—(iva®/anl) cos? ¢ (6. 1 8)

nl

Z(g) = yerointsin g 3 [p(3m](

The separated form (6.17) is certainly advantageous and, when substituted with (6.13) into
(6.16), yields

/’"2(a¢; 7) iv < m a—2ivmlsin r a2ivasin Gr47)
A% S AP € e ,
Z(@) =4 P2 [£(37)]
x -%(van)*e*"i {|sin Lr—7) |<}ezivasin Ylr—yl [sin (7 + ;y)]}ezivasin %(‘r-i-)’)}dq-

after the contour has been deformed to § and P(7) expanded as previously. The phase functions
in this integral are stationary when

7 ~ n—(a/2ml) cos (in ¥ §7),

and the corresponding saddle point contributions yield

. © 3
ﬂz(zazb¢:)7) ~ %V€2i"a m§1 [p(%n)]m (;:—l) e—2ivml

x{[sin (37 +3y)}] exp {iva[2 sin (}n+}y) — (a/4ml) cos? (in+}y)]}
—[sin (3m—47)]} exp {iva[2 sin (}n—}y) — (a/4ml) cos? (4n—3y)]})
~ ey, (§na; y), (6.19)

by comparison with (6.15). Thus p,(ad; y) is, to leading order in (vl)~! and a/l, of separated
form with the offshore angle 7 = }n appearing as a preferred direction not only in p,(4na; )
but also in the construction of Z(¢) in (6.17). However, the form of the iterative sequence of
source density functions does not become apparent until the next step has been completed.

Now )
oot ) = 2 [ Pr)o(as 7) [ mlag's y)vecossontsin (vasin ¢ sin 7)dg i,
c 0 :
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CONTINENTAL SHELF WAVE SCATTERING 409

and by rearrangement with the use of (6.11) it readily follows that the equation for ug(a¢; y)
corresponding to (6.16) for u,(a¢; y) is

palagi ) == [ P(r)mlags ) [ pafag's 7)evecort ovrsin (vasin ¢ sin 7)dg a7
c 0
By virtue of (6.19), the arguments applied to (6.16) now imply that
pa(agsy) ~ Ve Z() Z(3n) py($na; v). (6.20)

Comparison with (6.19) indicates that the iterative sequence is such that

Unir(ad; y) ~ [P Z(3n)]" P ug(ad;y) (n > 1)
~ ema[Z(En) "1 Z(¢) py(3ma; y) (n

Hence the total source density is asymptotically given by

\%

1).

wag;v) = éﬂﬂn(asé; V) ~ polads ) +m(ag; v) + e““f_(?(’;;(f;‘fj N, (e

where #g, ¢, and Z are given by (6.10a), (6.15) and (6.18) respectively. In the last term, the
denominator is

® b
1-Z(men = 1-jeve 3 [p3n] (G) e

1-3(a/hp(3r) e~ -0@[ p(}m) =2, 4, 1], (6.22)

where @ is defined by (3.23). In these calculations, the degree of approximation with respect
to the ratio a// is that terms of order (a/)? relative to uy(ag; y) have been neglected, va being
regarded as equal to eight in the exponential functions. In this respect, there is no reason to
proceed beyond the iterate us(ag; y), given by (6.20), and the result (6.21) is equivalent to
terminating the series at n = 3. However, the retention of further terms illustrates how the
higher iterates are due to the presence of rays that are almost trapped on the offshore line
¥x=0,a <y <!l In(6.22), p(}n) is the reflexion coefficient, and 2v(/—a) the phase change
per cycle of such a trapped ray. There is an obvious comparison with the argument p(}nr) e~2*
of the generalized {-function @ which appeared in (3.24) in respect of rays propagating exactly
offshore from a source.

The source density x(a¢; v) having been estimated, the scattered field is given, from (5.5), by

x5 9) = [ ulags v)Gy(x=acos 6,43 asin g)ads, (6.23)

which in the near field consists of a complicated pattern of reflected rays as indicated above.
However, in the far field, substitution of (3.20a, 4) in (6.23) yields

N
xxy) ~ 213 O v) e~vzeosym gin (vy siny,,) as x - o0,

2, E
x(x,y) ~ —2i § Memm"m sin (vysin 8,,) as x->—00
’ m=1 E(n_sm " ’
where
Ho(r,y) = afo pulag; y)eracosdeost sin (g sin ¢ sin 7) dg. (6.25)

36-2
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If a sequence {I7,,(7, y); n > 0} is related to {u,(ag; v); n > 0} in the obvious manner, then
IIy(7, y) is given by (6.13), and (5.13) implies that II(7, y) satisfies the integral equation

Hr,) -, 9) = £ [ P t(r, )10, ) e

However, an iterative solution of this equation is a more difficult calculation than the
evaluation of the integrals obtained by direct substitution of (6.21) into (6.25). The values of
E and the complex /1, (in radian polar form), displayed in table 2, are calculated from (3.19)
and (6.13) for the modes listed in table 1 and suggest that the greater response of the higher
modes in (6.24) is due to both the £ and IT functions.

TABLE 2
m E(y,) UITy (Y, ) —E(I1-4,) 2illy(n—~3,,,7)
1 45.32 (1.747, 1.158) 39.00 (0.762, —2.730)
2 38.98 (2.963, 2.750) 37.49 (1.526, —2.882)
3 35.09 (3.750, —2.179) 34.83 (2.296, 3.130)
4 30.70 (4.392, —0.732) 30.73 (3.076, 2.701)
5 24.70 (4.925, 0.915) 24.46 (3.882, 2.021)
6 13.38 (5.321, 3.140) 13.30 (4.765, 0.720)

7. THE SLENDER OBSTACLE

Suppose that the curve I is given by
y=eL¥(x/L) (|x| < L, ¥(+1) = 0), (7.1)

where ¢ is a small parameter and ¥ has maximum value one and derivatives of order unity.
Then the principles of geometrical optics suggest that the portion of the incident shelf wave
that, in the absence of the obstacle, would have been reflected from the segment |x| < L of
the shoreline, will now be slightly ‘fanned out’, but will not be reflected back to the obstacle
provided, to leading order, L < [ cot 7y, which will be assumed to hold. Since the sharp corners
of the obstacle region D lie on the shoreline where x;(x, y; v) vanishes, no edge wave diffraction
occurs and hence only the basic scattering problem need be solved since further iterates due to
finite 4/ must be asymptotically zero.

The use of a source distribution on I, satisfying (5.7), is likely to involve the geometrical
optics approach of Levy & Keller (1959). An alternative method of solving the basic scattering
problem is to represent the scattered field as that due to singularities placed within D, as
illustrated by (6.3). In the present case, the singularities may be confined to the x-axis, about
which D is symmetric, and must, as in (6.3), be of odd order because condition (2.30) implies
that all the fields due to even-order singularities are identically zero when the singularity is
at the shoreline. Thus define, for n > 0,

Gi’n-{-l(x, y) — G?‘, 2n+1(x’ y) + G;‘. 2n+1(x’ y)

_ [0 Gy (%, Y) PGy (%y Y )]
- oYyen+1 Yo + oYent1 ¥eo

MG, (x,9;Y)
B [_-TY)%’T:‘—“]Y-ao' (7.2)
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Then each function G¥**'(x, y) satisfies the same conditions as G, but with singularity at the
origin, being given by G% 2*+1(x, y) which is a multiple of H{%, ,(vA) sin (2z+ 1) ¢. In particular,
from (3.2),

GY(x, y) = 3vHP(vA) sin ¢

~ —sin ¢/nA = —y/n(x2+y?) as A -0,

which corresponds to a dipole singularity.
A solution of the basic scattering problem, obtained by exploiting the slenderness parameter
€ in (7.1), can now be written as

© I
3 et |1 (- g, (X, o) Gyei(r— X, 5)dX,
n=0 —L

where the functions g, (X, €¢) are to be determined from the integral equation obtained from
condition (2.32), namely

w‘oez"“fLL (L2—-X?)mtig (X, €) Gy 2+ [x - X, eLl?(x/L)] dX = —x;(x, eLIAf(x/L) ;7). (1.3)
Here the factors 2"+ anticipate the orders of magnitude of the density functions, and the
factors (L2 — X?)2»+1 are required to allow repeated integration by parts. The details of the
expansion of (7.3) in terms of the small parameter ¢, and the subsequent determination of
{g.(%, €); n = 0}, follow those of Geer & Keller (1968), and since further iterates are asymptotic-
ally zero, the required scattered field x(x, y) is given by

L
x(%y) ~ T et f (L2 — X2)H1g, (X, €) Gi"H (x — X, y) dX. (7.4)
0 -L

n=

With the aid of (7.2), substitution of (3.204, b) shows that the far field behaviour is such that

N o i 2n+1 L

X(x,y) ~21 Y X M (_1)nf (L2 — X?)2n+lg, (X, €)dX
m=1n=0 E(vm) —-L

x e~vzeosym gin (vy siny,) as ¥ ->o0

. Y = (evsin §,,)2H
Xy ~ 2 3 3 2sn )

L
— R (—1)nH] 2 _ Y2\2n+1 X X
m=1n=0 E(n:—Jm) ( ) f—L (L X ) gn( ) G)d

x ezeosdnm sin (py sin 8,,) as x —>—o0.

The validity of the solution of (7.3) by means of slender body theory requires, as stated by
Geer (1978) for the corresponding three-dimensional problem, that vLe must be small. The
numerical values of §4 have v ~ 0.4 km~! in which case Le¢, the maximum projection offshore
of the obstacle, must be less than one kilometre.

Since the order-e¢ terms in (7.3) yield

LY (x/L) (ox;
go(x: 6‘) ~ L2—/x2 (-@)y—éﬂ,

it follows that the leading term of (7.4), namely the convolution integral

L
¢ [7 (- XX, 0) Gl X, p)aX
-L
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can be readily identified as the field calculated by Buchwald (1976) who expressed condition
(2.32) as an approximate one on the shoreline and was then able to use a Fourier transform
in the alongshore direction. His expression (17) is (9x;/0y),—, times the suppressed time factor
times the inverse Fourier transform of the product of the transforms of LY(x/L) and Gi(x, y).

8. THE OFFSHORE BARRIER
(a) Determination of an approximate p

For the offshore barrier, the curve I'is the repeated line x = 0, 0 < ¥ < a, and the scattered
field is given by (5.1) with the source density u(y; v) determined by (5.4). The geometrical
optics approximation is insufficient now for the estimation of the scattered field g(x, y; v) in
the 6/ — oo limit because it cannot predict the edge-diffracted waves which are radiated from
the sharp edge at (0, a).

The construction of § must begin by taking due account of the singularity at this edge,
near which the barrier appears to be semi-infinite, so that the dominant behaviour of £ in this
region may be expected to be like that of the well known solution for the scattering of a plane
wave by a semi-infinite plane. This exact solution is given in various forms, all involving
functions of period 4w, by Clemmow (1966), Jones (1964) and Morse & Feshbach (1953).
The function '

U(r cos w, rsin w; 7) = — (1/nd) e eI (F[(2vr)} sin §(w +7)] +F[(2vr)} cos }(w—1)]} (8.1)

represents the scattered wave field (— in < @w < §n) produced when the plane wave e~ireos(@+n
travelling in a direction making an angle 7 with the w = 0 axis is incident on the semi-infinite

‘soft’ barrier w = —}n, $n,r > 0. The function F in (8.1) is the complex Fresnel integral
defined by
F(z) = ¢ f B dE (8.2)
(Clemmow 1966) and has the elementary properties
F(z) +F(—z) = ntel@-1 forall z, (8.3)
F(z)~i 1—L+ as |z| >oo(—%r < arg z < in) (8.4)
2iz 2122 " " * & an ’

Since only odd powers of z occur in (8.4), the relation (8.3) implies that as |z| — oo in the
other half-plane, the asymptotic form of F(z) is the expansion (8.4) plus the exponential term
which is dominant in the second and fourth quadrants and recessive in the first and third
quadrants. The Stokes lines arg z = — §n, ix are the lines of steepest descent of €',

The plane wave representation is preferred here, as in the construction of the Green function
in §3 and the solution for the semicircular headland in §6, because it is the most amenable
to the application of the conditions (2.31) at the shelf-ocean boundary y = /. The ease with
which the shadow and lit regions may be identified is also attractive and, in the belief that
the approximate solution presented here for scattering by a ‘soft’ strip is unavailable in the
literature, the details are included for explanation and subsequent reuse in the succeeding
approximations.
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CONTINENTAL SHELF WAVE SCATTERING 413

The function defined by (8.1) is evidently symmetric about 7 = }m, i.e.
U(rcosm,rsinw; n—71) = U(r cos w, rsin w, 7), (8.5)

since it is determined by the condition that it be equal to —e8in7 on @ = —in, $n. Equa-
tions (8.3), (8.4) imply that, for large vr, the plane wave terms of (8.1) are confined to the
regions where either the sine or cosine is negative, i.e. —in < w < —7 (shadow) and
n+7 < @ < §n (reflexion) if the wave isincident from theleft (|7| < in),and ~n <w < 7-1
(reflexion) and 2n—7 < @ < $=n (shadow) if the wave is incident from the right (3n < 7 < 2n),
with the function F providing smooth transitions. The remaining terms, with exponential
factor e, correspond to edge diffraction, i.e. waves travelling in all radial directions away
from the edge r = 0. For the wave approaching broadside on (7 = }nx),

U(r cos w, r sin w; }n) = — (2/nt) e~107—19 F[(2vr)¥ sin (Jw + in)] (8.6)

which, according to (8.4), consists only of edge-diffracted waves except in transition regions
either side of the semi-infinite plane. The function U is undefined at 7 = —}=, $n, a property
that considerably complicates the subsequent argument.

The complex Fresnel integral is the canonical form of a plane wave representation with a
simple pole. According to Clemmow (1966, equation (3.65)),

f sec }(7—7,) e~reos@-ndr = I 4nte-ier+NF[ + (2vr)} cos 3(0—17,)], (8.7)
5(0)

where S§(0) is the contour shown in figure 24, and the upper or lower sign is taken according
as cos (6 —17,) is positive or negative. Evidently the sign changes in (8.7) occur when 6 co-
incides with a pole of the integrand, i.e. the transition region is characterized by the saddle
point being close to the pole.

As a first step in constructing ¥, the singular behaviour near the sharp edge at (0, a) can
be included by means of the function V(x, y; ¥), defined as the scattered field produced when
condition (5.3) is applied on the semi-infinite barrier x = 0, —c0 < y < a. Then comparison
of (2.29) and (8.1) shows that

V(x,y;7) = (1/2i)[ebesinr U(x, y —a; y) —e #asinv U(x, y —a; —v)]. (8.8)

The non-vanishing of V at y = 0 can be remedied by subtracting V(x, —y;7y), which is
equivalent to adding the scattered field when the barrier is at x = 0, —a < y < c0. Then
(2.30) is satisfied but the field is equal to —x; at x = 0, |y| < 4 and has discontinuous x-
derivative at x = 0, |y| > a, arising principally from total reflexion. These difficulties are
essentially overcome by subtracting the scattered field due to an infinite barrier at x = 0,
namely — x;(||, ¥; ¥). Hence the field

X*¥xy57) = Vixy; v) = Vx, —y57) +x:(|x), 95 7) (8.9)

satisfies (5.3) and, by elementary consideration of the shadow and reflexion regions described
above, is seen to have a beamlike scattering pattern as shown in figure 3. Evidently x* is
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even in x, odd in y and its x-derivative at x = 0, |y| > @ must be small since edge diffracted
waves propagate radially. Let the function 4(y; v) be defined by

. _ ax* r=0+ _ ax* . ax* .
A(y) 7) = [ ox ]x=0— ""'67 (O+’ Ys 7) ——5;(0—,!/, Y) (8°10)
0 %
= %(Ohy;y)-
Yy

=y

- -~

Ficurk 3. The beam-like scattering pattern of x*(x, y), which is even in #, odd in y. The signs indicate that for
x positive, one or both of the component waves of x; in (2.29) may be annihilated, yielding shadow regions.

For y > a, 0V/0x is continuous and hence

oV oxs
Aly;7) = -2 (04, ~137)+222(0,437)

_ o . X e
==25-(0+, —y;57) =250, =957).
But from (8.1) and (8.3)
U(r cos w, 7 sin w; 7) + e breos@in — (1 /nd) e-ir—in{F[ — (2vr)} sin {(w + 7)]
—F[(2vr)tcos d(w—1)]} (8.11)
and thus
0 : .
—_ —a: —i —(y—a)sin 7]
{E)x [U(x, y = a5 7) o e7vleonr=umain ]}a:=0+
1(d -
=7 {% [U(r cos w, rsin w; ) +e"‘"°°ﬂ(“’+7>]} "
= —(2v/nr)te-ter-1 F'[(2vr)} sin (}n—17)] cos (3n—37)
= —[v(1 +sin 7)/n(a—y)] e Wa-v-id F'[p(a—y) (1 —sin 7)}].

Hence, on substituting (2.29) and (8.8), it follows that, for y > a,

% e-iltaty)+im ) . , .
4437) = (&) S o (1 sin PP [ (a1 sin 7)1

T
_e~ivasin-y(1 —sin »};)’}F'[V‘E(a.yy)% (1 +sin 'y)é]} (8.12)

Since 1 —sin ¥ is not small, the asymptotic formula (8.4) yields

e—ia+y)~inl [eimsin 7(14sin y)t  e-esiny(1 —sin y)}

Alys ) ~ 2(vn)t (a+y)t 1—siny 1+siny ] y > a),
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CONTINENTAL SHELF WAVE SCATTERING 415

which expression is oscillatory and uniformly small, as expected, because it is due entirely to
the edge-diffracted waves that travel along the barrier from the ‘image’ edge (0, —a), or
equivalently those that propagate along the barrier from the actual edge (0, a) and are re-
flected back at the shoreline.

On the barrier, all three terms on the righthand side of (8.9) have discontinuous x-derivative.
However, on writing

x*(x y57) = [V 957) —x:(|x], =95 7)]
=[Vix, —y57) —xa(l2l, v5 V)1 = x:(lx], w5 7)),

it readily follows from the above calculation that, for 0 < y < q,

A(y;y) = 2iv cos y sin (vy sin y)
(v)ir e-ia+y)+in

g e (ksin )P +g)} (1 —sin )}

n
— c—ivasin-y(l _sin 'y)%F'[v%(a +y)é (1 +Sin ’y)%]}

N} e—iiHa—v)+in vasin . , :
~(3) ey e (L sin PP Drb(a—p)} (1 —sin )]

—e-basiny(1 —sin y) P [h(a—y)b (L +sin )4}, (8.13)

The first term is that predicted by geometrical optics, the second is small and the third is
singular at y = a because, from (8.2), F'(0) = —1.

To make use of the function x*, defined by (8.9), it is essential to remove the discontinuity
in 0x*/0x at x = 0,y > a, even at the expense of violating the barrier condition (5.3). The
function %,(x, y; v) defined by

folr937) = X% 93 7) = [ A5 9) Gyl 3 V)4, (5.14)

where Gy (x, y; Y), given by (5.8), is equal to the first two terms of (3.2), is clearly the appro-
priate modification of x* since, ify > a,

[0Ro/0x]0% = [Ox*/ox]gt —4(y57) = 0,

by virtue of (8.10) and the singular term (2n)~!'In R in H{®(vR). Moreover, if, for X, ¥
fixed with ¥ > 0, Green’s theorem is applied to x*(x, y; ¥) and H{H{®(vR) — H®(vR')} in the
first and second quadrants of the (x, y) plane successively, then it follows on subtraction that

= [ox* ox* :
* . — AT . A _ . .
Xty = [ [ 04, 739 - 2 0, ¥ )| 63 s DAY,
Hence an alternative form of (8.14) is
a
fols,939) = [ 4(¥5 ) G304 Y, (5.15)

which indicates that the approximation fy(r,y;y) to the solution f(x,y;7) of the basic
scattering problem is generated by a source distribution on the barrier of density 4(y; 7y),
which is therefore the corresponding approximation to zy(y; ).

37 Vol. 303. A
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416 A.M.J. DAVIS

By using the representation (3.5), equations (8.14), (8.15) can be rewritten:

Rl 439) = X¥(5,937) + 32 [ e sin (v sin 7 f A(Y; y)e-w¥snrdYdr
a
(0<y<a) (816)

Rolx, 95 7) = —51-1; e—"’(””""s””smf’faA(Y; v) sin (vYsin 7)dYdr (y > a). (8.17)
c 0

In both integrals, an equivalent contour is S, and the symmetry of each contour about the
point 7 = }x allows x to be replaced by |x|, thus demonstrating the known evenness of g, in x.
The Y-integrals can be evaluated straightforwardly. Substitution of (8.12) yields

on A(Y;y)eP¥sintdY = %e*i‘"ﬁcos y[J(v—vsiny, v+vsin7)~J(v+vsiny, v+vsin 7)],
a

(8.18)
where

& =S [P T s (my <0,

Meanwhile, (8.13) implies that

ifaA(Y; y) sin (»Y sin 7)dY = n—l;e—i"i cos y[I(v+vsiny, v+vsin 7)
0

—I(v—vsiny, v+vsin7)~I(v+vsiny,v—vsin7)+I(v—vsiny, v—vsin 7)]

sin[va (sin 7+4sin y)] sin [va(sin 7 —sin y)] (8.19)
sin 7+sin y sin 7—sin y ’ )

+cos y {
where
e~i£a

— e—nY el
167 =S [ e PIee D
These integrals can be evaluated from the indefinite integral

fe*in’( gyt %y_ = 2e-im {ﬁF(g&y 1}2 : Z%F(”iy é)} + const. (8.20)

obtained by integration by parts and use of (8.2). This shows that

~i¢+a

7E 1) =~ er(eea - (1) Ficena )

e~1(§+7))a F'[(2£a)}] —F'[(29a)}]
E—y { 2i(2£a)} } (20

e~ ~iE+ya

16, 1) = S [Fl(2a)] - ()F{(znam}

By’
— 1—{= e—i(g‘ﬂ)a, 8.22
2(6-17) £ (8:22)
since F(0) = 3nte-i", from (8.3).

The validity of (8.21) requires that

im -t [ F(gtgh) - () Flatoh)| =

Y—>0
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CONTINENTAL SHELF WAVE SCATTERING 417

which, according to (8.3) and (8.4), implies —§n < arg & < }n and —in < argy? < 0
the latter being consistent with the stated restriction on the definition of J(£, ). These con-
ditions are satisfied by taking the positive root (2v)¥sin (3n+3y) of £ = v+vsiny, as in
(8.13), and choosing 7% = (2v)}sin (}n+37) when 9 = v+vsin7(|Re 7| < 4n,Im 7 < O or

© < Re7 < $n,Im 7 > 0 as in unshaded regions of figure 26 with 6 = irn). The nearest
branch cuts of (1 +sin 7)}, namely S(—}n) and S(2=), are obviously immaterial.

Since the range of integration is finite, there is no restriction on the validity of (8.22) which,
due to (8.3), is independent of the choice of #3. Again £? is positive, and 7} is chosen as above
when # = v+vsin 7 but some latitude is available when 7 = v—vsin 7. For the expression
in square brackets involving Fresnel integrals to have no plane wave terms, as in (8.21),
(v — vsin 7)% must have a branch cut along S with values (2v)¥sin (}n — 37) and (2v)¥sin (37 — Ln)
on the left and right of S respectively. If, on the other hand, it is desired to make evident the
analytic dependence of I on 7, then either choice of (v—vsin 7)¥ will suffice for the whole
complex 7-plane with the symmetry about 7 = }n and periodicity, period 2=, being re-
coverable from the functions of period 4= in 7 by means of (8.3).

On substituting (8.21), (8.22) into (8.18), (8.19) respectively, it follows that

[Zawsyyevrmray = oftn, v - ofr, )
(|Re7| < 4n,Im7 <0 or in < Re7 < §n,Im7 > 0), (8.23)

[ py sin 0¥ sin ) a¥ = fr,9) Flr, =9 ~F (=m0 4 (=7, -7)
+g(1’ 7) —g(’l‘, _7) —é(—T, 7) +§(_Ts _7)’ (8'24)

where

a et cos y . sin (}n+37)
= i 1 Pl & Lo 3

Fr, ) = e (P sin (tn-+49)] - et Fl20a)bsin (dr+3)])

X e—wa(2+sin 7+4sin y), ( 8.2 5)

_ sin (;];1: 1Y) sin (3n+37) o osin r—siny)

&(r.7) = i (siny—sin 7) erarmTY
= }i[cosec (7 —7y) +sec (7 +y)] elvacinT—siny), (8.26)

The definitions (8.25), (8.26) are valid throughout the complex 7-plane, but, as indicated
above, the following rearrangement may be helpful:

S(=1,7)+8(=7,7) = filcosec }(7+y) —sec }(1—y)]e-batinrssiny

e~ cos y ) {F[2(va)% sin (3 +1y)] - F[2(va)}sin (37— %n)]}

Asiny +sin 7)
x e—iva@—sin74siny), (8.27)

sin (37— n)
sin (3n+ 1)

Evidently the steepest descent path S is the Stokes line separating the two asymptotic forms.

The result (8.26) indicates that when (8.24) is substituted into (8.17), integrals of the type
(8.7) are obtained. Although each side of (8.24) is analytic in 7, the combmatlon of g-functions
consists of pairs of functions, e.g.

%l cosec %(T — ')’) [eiva(sin 7-8iny) __ e~iva(sin r—sin 7)] ,

that together are regular in 7 but have different phases. This phenomenon corresponds to
beam waves and it is of interest to verify that £,(x, y; ¥) has the same beam wave scattering
37-2
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pattern as x*(x, y; ), illustrated in figure 3. Substitution of (8.23) in (8.16) shows imme-
diately that the additional term consists only of small, edge-diffracted waves. It therefore
remains to show that the beam wave structure of the right-hand side of (8.17) is identical to
that of x*(x, y; y), i.e. that if the g-terms of (8.24) are substituted into (8.17), the 7-integral
obtained is equal to x*(x, y;v) wheny > a

Considering only x > 0 because x* and V are even in x, the condition y > a implies, by
comparison with (8.1), (8.8),that0 < w < }nfor V(x,y;y)and —in < w < Ofor V(x, —y; 7).
Further, the angle 7 in (8.1) must be set equal to + 7 in turn. For U(r cos w, 7 sin w; y) with
0 < @ < }n, the arguments of the Fresnel integrals both remain positive and the canonical
form (8.7) yields

U(r cos w, rsin w; y) = Zl;f [sec 3(1—m+7y) +sec (7 —y)]e-reosiw-ndr
S(w)

= f [cosec 3(7 +7v) +sec 3(7—7y)]e-breost@-ndr
4n S

since the deformation crosses no poles. The corresponding result for U(r cos w, 7 sin w; —7v),
with 0 < w < 3= stilly is less easily derived because the shadow boundary w = y means that
the argument of the first Fresnel integral is negative for 0 < @ < 7y. Then, with the use of
(8.3) and (8.7),

% e-10r=1F[(2vr)} sin }(w —y)] = e-Preos@-n _ ;—tl—% eI F[(2vr)t cos (w+n—7)]

= e—ivrcos(w—.y) — __l_ cosec %(T _ ’)’) e—iweos(w—r)d7
T S(w)

i .
=—— f cosec (7 —y)ereos@-ndr
4n | 5

since the deformation crosses the pole at 7 = y. Thus the same result as for y < w < }n is
obtained and, on substitution of these plane wave representations of U(r cos w, 7 sin w; +7)
n (8.8), it follows that

V(% y;7) 2mf [&(r, —7) —8&(7, y)]evecosrivsinndr  (x > 0,y > o)  (8.284)

where 2 is defined by (8.26). The corresponding results for —in < w < 0 are best obtained
by observing that (8.3) enables (8.1) to be written as

U(r cos w, —rsin w; —7) + e~broos@+n)

= —%e*“"‘i"){ —F[(2vr)} sin §(w +7)] +F[(2vr)} cos H(w—1)]}.

Hence, by comparison with the derivation of (8.284), it follows that

Vs, =357) = ~gg [ [8(=77) =8(=7, —p)leiecosrsmmnndr y,(x,y; y)

(x,y = 0), (8.285)
and when (8.284, b) are substituted into (8.9), the even function x* can be written in the form
xX*(x, y; ’}’) = 21t1f [&(7,v) — ) _g( -7, ')’) +§( -7, _y)]e—iv(ac0051+'.'lsin ndr
(y = a).
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CONTINENTAL SHELF WAVE SCATTERING 419

Thus, as anticipated, the expression (8.16) for g, has the same beam wave scattering pattern
as x*.

The order of magnitude of the difference £, — x* on the barrier gives, since x* satisfies (5.3),
a measure of the error involved in approximating g by £,. Substitution of (8.23) into (8.16)
yields

Ro(0, 55 7) = x*(0, 55 7) + f[f(T, )=f(r, =y)]sin (vysin 7)dr (0 <y < a). (8.29)

Now, for all 7 on §, the asymptotic expansion (8.4) can be used in (8.25) to obtain

e—}ni sin ( % T— 12—)’) e—iva(2-+sin7+siny)

8(va)tnt(1+sin ) (1 +sin 7) (8.30)

f(T7 7) ~
= e-Vasint 5 slowly varying function of order (va)-%

The path §is the steepest descent path, yielding terms of order (va)~—2 except for the component
esin7 of sin (vy sin 7) when y is close to @, for which the corresponding integral becomes
algebraic of order (va)~% as y — a. Thus (8.29) implies

£6(0, y57) = —sin (vysiny) + O{(va)~3/[1 +vh(a—y)}]} (0 <y <a).  (831)

This result shows that £o(x, y; ¥) is a good approximation to the scattered field £(x, y; y)
in the 4/ - oo limit, with, according to (8.15), 4(y; v) the corresponding approximation to

Ho(Y5 7).
(b) The scattered field due to p,

On proceeding to consider the effects of the finite value of 4/, the fields obtained by setting
u(y) = A(y; v) in (5.1) are given, after substitution of (3.10), (3.12), by

f A(Y;9) Gy, y; 1) AY = (x93 7) + f P(r)e-b2e0s sin (vy sin 7)
xjo A(Y;9) sin (vYsin 7)d¥dr (0 <y <0). (8.32)
L“A(Y; Y)Gy(x,y; Y)dY = —%tfsQ(T) exp {i(b/o—v cos 7) [x +i(y — )] + b}
xf:A(Y; v) sin (vYsin 7)dYdr (y > ). (8.33)
For x # 0, these fields can be expressed in terms of shelf wave modes by substituting (3.20a, )

in (8.32), or (3.254, b) in (8.33). All the coefficients are determined by (8.24); for example,
in the shelf region

a —ivz 'm
f A(Y;y)Gy(x,y; Y)dY ~ 2i E ey su;,(;»y Sin V) f A(Y; y) sin (vY sin y,)dY
0 m

as x - 00, with N set equal to 6 as in §4.
The scattering pattern of these fields can be investigated by using (8.24) again to evaluate
the Y-integral, P(7) being replaced in (8.32) by P, (7) as in (3.16) and P, (7) expanded on §
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asin (3.21). Then, by deforming the path of integration of each term to its own steepest descent
path, residue contributions are obtained from the integral in (8.32) as follows:

— (1/2i) [p(y)]P e iecos yHeni-wsiny) = _ (1 /2{) ¢-Mecos y-ysiny)
if 2nl—y—a <axtany < 2nl—y+a (n 2 1),
(1/2i) [p(y)]re-Wzcos rhenttnsing — (1 /i) e-inzcosy+ysiny)
if 2nl4+y—a <axtany < 2nl+y+a (n > 1),
— (1/2i) [p(m —y)]meMtacos y—enl-wisinyl — _ (1 /2i) einzcos y+ysiny)+2ine
if 2nl—y—a <—xtany < 2nl—y+a, (n > 1)
(1/2i) [p(m —y)]" eiMzcosy—@nitwsing — (1 /2]) glecos y—ysiny)+2ine
if 2nl+y—a <—-xtany < 2nl+y+a (n > 1).
The simplification for x > 0 is achieved because 7 = v is a pole of P(7), defined by (3.11),

and hence the phase change factors p(y) and e2"siny (= %) cancel. For x < 0, the phase
change factor is given, from (3.9), by

p(7) e —e?v

and differs from unity because the wave totally reflected by the barrier cannot satisfy the
conditions at y = / and thus does not belong to a shelf wave mode.

A

- 2 _ a--2iy
ere JB(RZY) o gge gnn,

y

Ficure 4. The beam-like scattering pattern, for x > 0, of the field generated in the shelf and
ocean regions by the source density 4(y, ¥) and given by equations (8.32), (8.33).

The corresponding disturbances in the ocean region can most simply be found by combining
the nth plane wave of the first or third sequence with the (n— 1)th plane wave of the second
or fourth sequence respectively and applying conditions (2.31). Then the contributions to the
field (8.33) corresponding to the above residues in (8.32) are

—exp {(b/o —v cos y) [ix— (y—1)] + b} sin al
if 2n—1)l—a<xtany < (2n—1)l+a (n > 1),
—exp {(b/o +v cos y) [ix— (y —1)] + bl + (2n — 1) ie} sin (al+€)
if 2n—1)l—a <—xtany < 2n—1)l+a (n>1).
On comparison with (2.28), (2.29), these results show that, for x > 0, the beam wave of %,

is repeatedly reflected at y = 0, ! as indicated in figure 4 and in such a way as to annihilate
the incident shelf wave mode in the ocean region (y > I), together with one or both of the
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constituent incident waves in the shelf region (0 < y < [), forming regions of partial or total
shadow. For x < 0, the results show that although there is a beam wave pattern which is the
mirror image of figure 4, the reflected fields differ from those suggested by ‘total reflexion’,
having phase changes in the shelf region and both phase and amplitude changes in the ocean.
These beam wave patterns indicate regions where the field (8.32) has plane wave components,
and the corresponding field (8.33) has an edge wave component, which are of the same order
of magnitude as the incident shelf wave given by x; and ¥, respectively. The edge-diffracted
waves, which in the shelf region vary like (vs)~te—1*s, where s denotes distance from (0, a)
along a ray, are propagated in all directions from the barrier edge and are then reflected at
the shoreline ¥ = 0 and reflected or refracted at y = [. Of particular significance is the ray
directed along the line of the barrier, x = 0, since not only do all reflexions remain on this
line but also it is evidently only this ray that necessitates the construction of the iterate u,(y; v)
of the source density, as described in §5. The violation of the boundary condition (5.3) due
to the field

f A(Y (% y; Y)dY-—-f P(1) x;(x, y,T)f A(Y; y) sin (vYsin 7)dYdr, (8.34)

which is additional to £,(«, y; ¥) in (8.32), is estimated by replacing P(7) by P _(7) as in (3.16)
and then using (3.22) or (3.24) to obtain

faA(Y; Y)GE(0,y; Y)dY ~ ‘-l—f P, (7) sin (vy sin T)faA (Y;y)sin (vYsin 7)dYdr
0

~ __1("1(;1)) e-idn 2 @[ p(im) e~2; 1, 1] sin vy f A(Y;y) sin (vY)dY
(0<y<a) (835

to leading order in a/l. The function @ is defined by (3.23) and the Y-integral, given by (8.24),
can be simplified by using (8.25), (8.26) and (8.30) to obtain

f A(Y; y)sin (vY)dY = Li[cosec (m— Ly)eral—siny) _ cosec (im + Ly) elradtsiny)]
+ (e~ /n}) {F[2(va)? sin (in— Ly)]e#a-sin cot (in—3y)
~F[2(va)t sin (}n+§y)]ebattsin cot ({n+y)]}
- +0[(va)-#] (8.36)

The factor (v[)~% on the right-hand side of (8.35) shows that the approximate solution
Xo(#, ¥ v) is more helpful here than was the exact solution in the semicircular case, where the
corresponding decay factor was (a/l). However, such success is only available once because,
in contrast to §6, the method, used to construct the approximations £, and 4 to £ and g,
respectively, cannot be used for subsequent iterates of the source density. The reason is that
the function U, defined by (8.1), is undefined at 7 = —}n and so the constructions ¥ and
thence x*, in (8.8) and (8.9) respectively, fail at the one angle that is evidently the most
important. The alternative method used below is crude by comparison but, being devised
so that the accuracy is maximized at the offshore direction, is sufficient for the present purposes.

The field (8.34) can, as in the description of (5.12), be regarded as the superposition of pairs
of waves of the form 2iy;(x, y; 7), with the component —e-@cosT+ysinn heing the reflexion
at the shoreline of the incoming wave component e-#@cos7—ysin7_ By pursuing this concept,
the scattered field produced when this incoming wave is incident on the semi-infinite barrier


http://rsta.royalsocietypublishing.org/

JA \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

422 A. M. J. DAVIS

x¥ = 0,y < ais given, according to (8.1), by e*#sin7 J(x, y —a; 7), whose reflexion in the shore-
line is e¥*sin*U(x, —y—a; 7). The failure of U(x, —y—a; 7) to account for the edge (a, 0)
should be immaterial for 7 # }n, because ray theory indicates that only the 7 = }r ray can
be incident on this edge. Indeed, if the field e [U(x, y —a; 7) —U(x, —y—a; 7)] is in-
serted into the 7-integral in (8.34) instead of 2iy,(x, y; 7), then, for all x # 0, no plane waves
are obtained, in agreement with the ideas of geometrical optics which indicate that only rays
travelling along the line of the barrier are subject to further scattering. Thus the dominant
value of 7 is }m, for which U is given by (8.6).

(¢) Determination of further iterates

Now consider the scattered field
Ul 5 7) = (1/2) e (U, y—a5 1) = Uls, —y—a; 7)

+2fm [aU(x, ~Y-q 1)] G, g Y)dy} (8.37)
“ ox e=0+ »

derived by modifying the above field to obtain one with continuous derivative at x = 0,
y > a, as x* was adjusted to create g, according to (8.11), (8.14). The expression corresponding
to (8.15) is then

: Coy s ovasine [“[OU(x, Y—a;7) OU(x, =Y —a;7) o .
le(x, Y 7) = —1¢ fO [ Ox - ox ]w=0+ Gx(xa Y Y)dY)
(8.38)

and a likely approximation to the next iterate of the scattered field, i.e. that due to the field
(8.34), is therefore

i

;Ef P(T)faA(Y’; ¥) sin (vY" sin 7)dY'U, (s, y; 7)d.
C 0

The corresponding approximation to the iterate p,(y;y) is then given, on comparison of
(8.15) and (8.38), by
- 1 o ra . )
m(ysy) ~ di(y57) = ,—JC P(r) emm’fo A(Y;y) sin (vY sin 7)dY

U(x,y—a;7) AU(x, —y—a; T)]]
x[ P - 3 o dr (0 <y <a). (8.39)

The acceptance of these approximations depends on how accurately the above scattered field
cancels the field (8.34) on the barrier.
The definition (8.1) implies that the derivatives of U in (8.37) and (8.39) are given by

oU(x, —Y—a; 1) _ _[ 4 ]é —iA¥ +a)+dni 1p—
[ P L=0+ =~ |71 € + cos (fn—47)

Y+a)
x{F'[(2v)} (Y +a)}sin (37— 3n)]+F'[(2v)} (Y +a)¥sin (jn—}7)]}(Y > —a). (8.40)
On the barrier, (8.37) takes the form

0,0, 73 7) + x:(0, 45 7) = —ichasins f ? [OU"" —r-q ’)] G3(0, 4; Y)dY
a Ox =0+

= -él;e‘”“sm’fcsin (vy sin 7') L [aU(x, ——af-—a; T)L:H e~ PYsinr’dydr’
(0 <y <a) (841)
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after (3.5) has been substituted. In the 7’-integral, both the path C and the integrand are
symmetric about 7 = 1r, with the steepest descent path S being a Stokes line for the asym-
ptotic expansions of the Fresnel integrals in (8.40). On the left side of S, (8.3) is used to write
(8.40) as
oU(x, ~Y—a; 1)
[ Ox

} = iv cos Te~M¥ +a)sin7
z=0+

—[2v/n(Y +a)]te- ¥ +atinl cos (In—37) F'[(2v)3 (Y +a)} sin (}r—37)],
which tends to [2v/n(Y +a)] e~ ¥ +ar+ini a5 7 In. thus indicating that the failure to take due
account of geometrical optics in the construction (8.37) is likely to be immaterial. Then

fw [OU(x, —Y—a; T)J e-wYsinr'dy
a Ox =0+

. e—iva(sin T+8in7Y) 2y N . . ,
= eWesint cog 7| eV —— €™ J(v—vsin 7, v+ v sin 7')
sin 7+sin 7 nt
e‘—ivasin 7’
= ( e-tvasinT g T_e—i(zva-#}n)
sin 7 +sin 7’

€08 U =37) (3 (va)t sin (3n—37)]

nva)t
—F'[2(va)}sin (In+ %T')]}>,

since J is given by (8.21). This result is valid at least for 7, 7" each lying in one of the regions
of validity of (8.23), i.e. when sin 7 and sin 7" have non-positive imaginary parts. The expan-
sion (8.4) is applicable to the last term and, by means of (8.3), the others can be written in a
form that is obviously symmetric about 7 = }=, thus extending the result to the right side of
S. Hence
[([esTosn] curaray - _emibusisinryida cos ({n )
Ox =0 2(nva)t (sin 7 +sin 7°)
x {F'[2(va)} sin (in—}7)] +F'[2(va)} sin (37— im)]+ O(1/va)}. (8.42)
Now, as 7 varies from —ioo to 7 +ico along S, the variable 7" defined by sin (}7—}n) = Teid
takes real values from —oco to co. Then

a

f e~2MsinT cos (3n—37) F'[2(va)tsin (37— in)]dr
s

o«

— 2c-@i-in f TR [2(va)t Telt]d T

— 0
B ée—i(zvl——i—n)
R il I 8.
() ey (8.43)
by integration by parts. Thus the factor 1 +a// measures the effect of the variations of the F'-
function near the saddle point 7 = 1, i.e. approximating F’ by F'(0) = —1 in the integral

introduces an error of order a/l, which parameter does not appear in the phase function.
On substitution of (8.42) in (8.41), it now follows that

- f P(r) [ "4(7's ) sin (¥ sin 1) AVT(0, 35 7) + 0,0, 43 M) d
C 0

e-—i(2va+i~n)

, . elvaGinr—sins) X ,
~ Saira)t ) (T) oos (kn—37)F'[2(va)t sin (%T—%ﬂ)]fs-——————-——sm (vy sin 7)

sin 7+sin 7’

xfaA(Y'; ) sin (vY’sin 7)dY’d7r'dr
0

38 Vol. 303. A
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p(%n) e—in2l+a) e—ivasinz/ sin Vy sin 7. ) , ) ot 1
onbv(a)d Js Tosn 7 A ) sin (vY")dY'dr’ @[ p(3n) e, §, 1]

(0 <y <a) (8.44)

to leading order in a//. The Y-integral is given by (8.36), the 7’ integral is essentially like that
in (8.29) and the 7-integral has been estimated by the familiar methods of §3.
The result (8.44) measures the accuracy of the approximation

?lif P(T)faA(Y'; y) sin (v¥" sin 1) dY'U, (v, y; 7)d7
C 0

to the scattered field produced when the field (8.34) is incident on the barrier. Comparison
with (8.35) shows that the error is relatively of order (va)—%, which is much larger than that
achieved for g, in (8.31). However, since the dependence on y of the right-hand side of (8.41)
is via ¥;(0,y; 7') in a 7'-integration along C, comparison with (8.34) suggests that a more
accurate approximation can be obtained by repeating the above process. Thus, by virtue of
(8.37), define

. _ . _1_ vasin 7 - ® aU(x’ - Y—(l; T)]
Uy(x, y5 7) ...Ul(x,_z/,’r)+2nei fOUl(x’y’T)fa [ ox =0+
x e W¥sinr’ Y dr. (8.45)

Repeated substitution of (8.41) then shows that, on the barrier,
Ue(0, 95 7) +x:(0, 95 7) = _ L evasins sin (vy sin 77)
42 cJo
XJ“” [OU(x, Y —a; T')] Y sine g 7" J“” [OU(x, —Y—aq; T)]
x=0+ a =0+

@ Ox ox
x e~ ¥ —asinr’'dydr’ dr”.

The Y and Y integrals are given by (8.42), and the resulting 7’-integral is

[ fFr20atsin G171+ P20 sin (47~ 101 +.0 (5| e AR AT

val| (sin 7+sin 7') (sin 7’ +sin 7”)

. 1 cos (1 TC-——T)dT
= ’ 3 1o 14/ Y 2
fs{2F [2(va)* sin (3n—47)] + Tva cos? (%n——%*r’)} (sin 7+sin 7') (sin 7" +sin 7”)
© . 1 einidT
= 4 } Tetni
f_w {F [2(va)? Tet] t St T2)} [sin? (In+37) —i72] [sin® (n+377) —172
= O(1/va)

after the term involving the Fresnel integral has been integrated by parts. Consequently
[Us(0, y35 7) +x:(0, y; 7)] is of the same form, on the barrier, as [U(0, y; 7) + x;(0, y; 7)] but
smaller by a factor of order (va)~%. Comparison with (8.44) then yields

%j f A(Y'; ) sin (vY'sin 7)dY'[U,(0, y; 7) + x;(0, y; 7)]d7
= 0{(va)2(v)~}/[1+J(v(a~y))]} (0 <y < a),
showing that this improved approximation satisfies the barrier condition even more accurately
than %,.

A sufficiently accurate approximation procedure having been devised for calculating suc-
cessive iterates of the scattered field, it is possible to seek an accurate estimate of the total
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scattered field. Since the source density corresponding to Uj(x, y; 7) is given by (8.38), the
source density that generates Uy(x, y; 7) is readily derived from (8.45). The improved approxi-
mation to the iterate of the scattered field due to the field (8.34) is

%f P(T)qu(Y'; v) sin (vY’ sin 7)dY ' Uy(x, y; 7)d7
c 0

and is generated by a source density 4,(y; y) which is a better approximation to the iterate
#1(y; v) than 4,(y; y), given by (8.39). Thus

my;y) ~ 4(y57) = -11; f P(7)elrasinr f “A(Y';y) sin (Y sin 7)dY”
C 0

{[OU(x,y—a; 1) 0U(x, —y—a; ) i J’ [aU(x,y—a; 7y OU(x, —y—a; 1)
X - +5= -
Ox Ox z=04 2T ox ox 20+

xfw [aU("’ — Yo T)] c—i"<Y—a>siuf'der'}dr (0 <y <a) (8.46)
a Ox 2=0+

The Y-integral is given by (8.42), and (8.40) implies that, for 0 < y < aq,

Caes v 3
[aU(x, yoair) W —y-s; T)Lof (35) e cos (3m 1)
><<( ip((IH;){F' 2v)t (a+y)tsin (37—in)]1 +F'[(2v) (a+y)tsin (3n—§1)]}
e—ina—y)

o F @) eyt sin (Gr— ] + P20} a—g)bsin Gn-4n)]} ). (5.47)

It is then evident from the expressions (8.42) and (8.47) that a typical 7-integral in (8.46) is
of the form

f P(7)easinT sin (vY’ sin 7) cos (3m—37) {F'[(2v)¥ (a+y)} sin (37— 1n)]
+F'[(2v)}(a+y)tsin (3n—-37)]}d7
~ % < i [po(7)]me-@ni-awsin7 gin (Y’ sin T) cos (3 —37)
" x F'[(2v)} (a+y)¥sin (37—3m)]d7

by the methods of §3. This integral can now be evaluated by using (8.43) with relative error
of order (v!)~! due solely to replacing p,(7) by its value at the saddle point, the result being

i 2, [pan]”

n=1

[ exp{—iv(2nl—a—-Y') +}ni} exp{—iv(2nl—a+7Y’)+ }ni}

a+Y'\t a+y B a—Y'\? a+ty ]
(n— 2/ ) [1+2nl—a—Y’} (n— 2/ ) [1+2nl—a+Y’]
which to the leading two orders in a// can be written as

va+in
—2((3:])1‘;% ):¢[[J(%T¢) -—2ivl, %’ —a/2l] sin (VY')

—olptdn e, 3, 1] | Lsin 07 + 17 cos 011,

where @ is the generalized {-function defined by (3.23). These expansions in powers of the
parameter a/! are ‘forced’ by the complicated denominators in the previous expression and,

38-2
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as in the semicircular case considered in §6, have the effect of the kernel of (8.46) being ex-
pressed in separable form.

On substituting (8.42) and (8.47) into (8.46) and estimating the 7-integrals as described
above, it follows that

2a \? a—y\? 2q \} aty\}
e e ) 2]

S e+ dy) LL(y; )dr,  (8.48)
Zhe.re, (2= $ (e—ivta— wF' ok 4 e— V(+y)FI o1} 4 N
w57) = () [P 1@ a=)bsin (' 0] o Pl (20)H (0 )i (47— )

xcos (37" —4n)/(1+sin 7'), (8.49)

¢ = w(al)t {idi[p(%n)e"?i”’ ! 1———Jf A(Y'; y) sin (vY')dY’

+4l<1>[p LIm)e-2i 3, ]f AY ;y)Y'cos(vY')dY'}, (8.504)

4, =—;() B[p(kn) 2, 3, 1] j A(Y'; ) sin (vY)dY". (8.508)

Since terms of order (va)~! have been neglected, the 7’-integral in (8.48) is only significant
near the edge y = a. One of the Y'-integrals in (8.504, ) is given by (8.36), and the other
can be evaluated similarly. As these expressions have been obtained without inserting the
actual form of 4(Y’; v), it is evident that the corresponding approximation 4,(y; ) to uy(y; ¥)
is of the same form as (8.48) with the coefficients ¢,, d, determined by replacing 4 by 4, in
(8.50a, b).

By elementary calculation, it readily follows from (8.48) that

@ . . . na\t
[ st v sim )y ~ 2aie,+ 4 - gieimio (),

e—i(va—}n)

— 3 (cl+dl)f f L(y; 7') sin (vy)dydr’,
. ' sJo
[ astws 1y cos () dy ~ ga(ei =4 + oo (),

14

elva—im
5 (¢1+ dy) f f L(y; ")y cos (vy)dydr'.
Meanwhile, from (8.49)

n\} [ cos (37°—1in) @ e 2w
ffLy, ) sin (vy)dydr’ = 1(2)fs Tisns f_a(a+y)%(l—e Y

x F'[(2v)}(a+y)¥sin (37' - Ln)]dydr

_ i b [ Cos 37 —im) [F[(2v)*<a+y)% sin (37 —3m)] _e-t
=13 s l+4sin7’ sin (37" —n) sin 7/

% [sin (37" —in)F[(2v)} (a+y)tsin (37— 1n)] -F[(2v)} (a +y)’}]}]ia dr’

cos (37" — %1: F[2(va)}sin (37' —in)] —F(0) e¥va .
- —im) —1]F(0
fs 1+sin 7/ sin (37" — in) sin 7/ [sin (37" —4n) — 1]F(0)

e~2iva

=1 .".t._ e—iva
14

c{sin (37’ — }n) F[2(va)} sin (37— In)] —F[2(va *]}> dr’,

sm
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the indefinite integral (8.20) having been used. Hence this double integral is of order »—! and
therefore negligible in the formula

faAl(y; y) sin (vy)dy ~ 2ai(c, +}d;) — Jiel®a-17 (na/v)de,. (8.51a)
0
Similarly the other double integral is of order »~! and thus
[\ 4200 1)y cos )y ~ §02cr—4) + Jacke i (ma )k (8.510)
0

Comparison of (8.39), (8.46) and (8.48) shows that only the cruder approximation A4,(y; y)

contributes significantly to (8.514, ). Thus although each iterate contains additional terms

as in (8.46), (8.48), such modifications do not affect, to the required order, subsequent iterates.
The simplest way to evaluate further iterates is to consider their sum. Setting

r*y;Y) = X #a(y37) ~ X Aaly57) = 4*(y57),

where u* = p—p, as in (5.13), the approximation 4*, to the total source density u* required
in addition to g, must satisfy a Fredholm integral equation of the second kind, derived from
the sequential relation of the form (8.46). Thus

A*(y;y) —Ai(y; 7) = %fc P(7) e‘”“ﬂinff:A*(Y’; y) sin (vY’ sin 7)dY’

{[aU(x,y—a; 7) 0U(x, —y—a;T)] i J‘ [aU(x,y—a;T’) oU(x, -—y—a;'r’)]
x - +=— -
Ox ox s=0+ 2T Jo Ox Ox 20

XJ“” [aU(x, —Y—aq T)] e—iv(Y—a)sin‘r'de7-’}dT (0 <y < a),
a Ox @=0+

and since the kernel involves, to the order required, the same functions of y as the ‘forcing’
function 4,(y; ), this integral equation can be solved by direct substitution and equating of
coefficients of such functions. Hence, corresponding to (8.48),

2q \*¥ a—y\? 2a \? a+y\?
Y ~ eV * [ =0 * (2 J _e-ir * * (7
avtys) ~ oo () v or () e o () o (5]

e—i(va—in)
(C*+ D¥) f Liy; 7)dr, (8.52)
S

2n?
where, like (8.504, ),

C*—¢, = @{i«p [p(%n)e‘zi“’, 1, 1-%] f:A*(Y'; y) sin (»Y’)dY’

+ g @lpm e, 1, 1] f CAM(Y'37) ¥ cos <vY')dY'},
o % a '
D*—dy = - (%) B[ p(3m)e-2, 3, 1] f (A7) sin (Y dY"

The equations corresponding to (8.514, §) are

' 3
faA*(y; y) sin (vy)dy ~ 2ai(C* + §D*) — Liei®a—in (E;) C*, (8.53)
0

a 3
[ 2% s w1y cos () dy ~ 3a3(0% —1D%) + daeiwatn () o,
0
38-3
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and it is only necessary to neglect terms of order (va)~! and @3/ to write the solution of the
simultaneous equations for C* and D* as

e e

1 . . @ .
X el {@ [ﬁ(%n) e, 3, 1 ——2%] fo A(y; y) sin (vy) dy

w]»-

+

1 21m e 411 [ a5 )y cos )

“Holpane g, [ags v sin opdy]. (859

Now by differentiation of (8.24) with respect to 7 and comparison with (8.36), it may be shown
that

a a
[ aws vy cos oy ay = e[ " (43 ) sim )y

a\? . [e—ira(l+siny) e—iva(l—siny) 1
o (L)} emtm [T 1) - o N s
+ (vn) e [ TTsiny sin (3n—1y) T—siny sin (in—l-%y)] (v) (8.55)

Also the definition (3.23) allows the corrections of order a/! to be absorbed in the @-functions,
orexample  g(z, 4, 1-a/20) +(a/4) Bz, §, 1) ~ Dz, §, 1-afl).
Hence, when terms of order a(v3)-* are also neglected, (8.54) can be simplified to the form

a ei@va—in) -1

04, 0%) ~ [1+2(8) @ [ptam e 4, 1+ 5] -5 @ Lpthme, 3, 1)

X7l ). AW ) sin () dy (@ phm) e 3, 1-5], =5 @ Lpam) e, 3, 1))

(8.56)
where the integral is given by (8.36).

(d) The total scattered field at the line of the barrier

These results are more accurate than those of §6 because, after sufficiently accurate approxi-
mations to the scattered fields have been constructed, the focusing of the rays on the off-
shore line x = 0,4 < y < [ is more pronounced for the barrier than for the semicircular
obstacle. Consequently the form of the source density iterates is established at x4, (all orders in
a/l) for the barrier, but only at x, (leading order in a/!) for the semicircle (equation (6.19)).
The appearance of two constants above corresponds to the retention of the two leading orders
in ¢/l in (8.48).

Another consequence of the barrier geometry is a simple physical interpretation of the source
density. Substitution of (2.20) in (5.2) shows that

wlysy) = e[y /ox]328t
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since ¥ is continuous across the barrier. Subsequent use of (2.3) and (2.5) shows that the dis-
continuity across the barrier of the offshore velocity component v is given by

[v1520F = —[A(0)] u(y; y) etvHod (0 < y < a),

which is consistent with the physical interpretation of u# as a vorticity distribution. The above
constructions of scattered fields are such that the approximation of the components x,, x* of
by the respective source densities 4, 4* has far greater accuracy than can be reasonably
achieved in the subsequent calculation of 4 and A4*.

The scattered field due to the source density 4(y; v) has been discussed above in detail and
illustrated by figure 4. The field §,, corresponding to the limit b/ - o0, is given by (8.15) and
is asymptotically the same as x*, illustrated in figure 3. In particular, it follows from (8.1),
(8.8) and (8.9) that on the line of the barrier

Ro(0, 45 7) ~ x*(0,9;7) = —(1/n}) e tbw-arin
X {FI(20)} (y—a)tsin (dn+§p)] ey~ F[(20)}y —a)} sin (n—fp)]ebesnr) (> a)

which, with the aid of (8.4), is seen to be a sum of edge-diffracted waves. The additional field,
due to bl being finite, can be estimated from (3.24), but the larger values of y mean that less
simplification is possible than in (8.35). Thus, to leading order only

faA(Y; y)GE(0,y; Y)dY ~ iJ‘ P, (7) sin (vy sin 'r)faA(Y; v) sin (vY sin 7)dYdr
0 N 0

3ni a
s

x {e"P[p(3n) e~ §, 1 —y/20] —eVP[p(An) e, §, 1+y/2]} (0 <y < 1) (8.57)

which indicates waves of slowly varying amplitude travelling to and from the shore along the
line of the barrier.

The exponential factors e**¥ in (8.52) show that, as expected from the construction, only
on the line of the barrier can the scattered field due to the source density 4*(y; y) be com-
parable with that due to 4(y; ). Since (8.49) and (8.52) imply that 4* is an odd function of
y, it is possible to write '

[farwmeso ey - i [* @) EPDE-11Y @ > 0. (859

The contribution of the term C*e¥[2a/(a—y)]* in A* to (8.58) can be estimated by com-
parison with the derivative on the barrier of the field (8.6). The result is e "w-9F[(2v)} (y — a)}]
times a multiple of order (v/)~% plus a2 much smaller term due to replacing the limit of inte-
gration by —oo. The contribution of the term D*e¥[(a—y)/2a]? in 4* to (8.58) is found by
considering also the field obtained by differentiating (8.1) twice with respect to 7 and setting
7 = }n. A similar result emerges. The first two terms of (8.52) produce smaller edge-diffracted
waves in (8.58) because they are due to waves travelling shoreward. The same is not true of
the next two terms in (8.52) which were inserted by reflexion in the shoreline without taking
into account the edge at (0, ) and which now contribute terms in (8.58) that are of the same
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order as (8.57). This is because, on inserting with negligible error the asymptotic form of H{?,
the exponential dependence of the integrand on Y cancels, leaving

a ) }
_3i J oY [C* (ai“y) +D* (“—‘2-:—1/) ] H® [v(y— Y)]dY

e—-i0v+im ra " 24 \% . a+Y ¥ dy
~ o) (37) 2 (%) [gom v> o

1({a H i y+a . 2a % —a 1
N JE PR T o * * (Y2 22\ _px(Y—a
3 (i) et [2om o (155 Jaresin ()" - 20 (5557) ).

where C* and D* are given by (8.56). With L defined by (8.49), the contribution of the inte-
gral in (8.52)-(8.58) is evidently negligible. Also generated by 4* on the line of the barrier
is a field like (8.57) but with 4 replaced by 4* throughout. The A*-integral is related to that
involving 4 by (8.53) and (8.56), whence

. ) [Famsvezo, s nay
fo [A(Y;y)+4*(Y;7)]G(0,y; Y)dY ~ 1+2n 1 (a/l)}D[p(3n) e 8%, 1, 1] (0<y<).

On collecting terms, the total scattered field at x = 0,2 < y < [ is found to be given by

x(0,59) = [“MTi NG 0,93 NAY ~ [1A(¥57) + 41V 7)G,(0,93 T
~ = (1/mh) et I (20)} (g —a)} sin (b -+ Jy)]ebesns
~F[(20)} (y =)} sin (e~ )] e-esn)
el fOA(Y; y) sin (vY)dY (24} s
+ (nvl)t 1+ 21 (a/l) D[ p(4m) e~2, L, 1] [Ec v arcsin (m) P[p(3n) e, §, 1]
+hp(hm) e e p(3m) -, 4, 1 y/2) —eD[p(k) e, 4, 1+y/20)]

(a<y<l). (859
[Ox(x, y5 7)/0x]peo~0 (a <y <), (8.60)

since the only way that a non-zero contribution can arise is through p(7) not being symmetric
about 7 = In. Then (2.20) implies

0 ib
'alé(os Y; 7) ~ ; ebe(O’ Y, 7):

Further, it is evident that

oy (0,95 7) _ 0le"x(0,9;7)]
Oy Oy

(a <y <.

On substitution of (8.59), it follows since |6 +iv| = (b2+12)t = b/o that corresponding terms
in these y-derivatives only differ in phase. In the context of (2.3), it is seen that the alongshore
and offshore components, at the line of the barrier, of the velocity field due to scattering are
such that, to leading order, corresponding terms differ only by constant phases.

The author wishes to thank Professor L. A. Mysak for suggesting this study which was
initiated during a visit to the University of British Columbia, supported by the National
Research Council of Canada.
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